
Semiconductor Optoelectronics (Farhan Rana, Cornell University) 

Chapter 12 
 
Laser Cavities and Microcavities: 
Vertical Cavity Surface Emitting 
Laser (VCSEL) 
 
 
12.1 Introduction 
 
12.1.1 Cavity Modes: 
Consider a Fabry-Perot laser cavity with facet reflectivities 1R  and  2R . The model gain per unit length 

is ga
~ . The roundtrip condition for optical power for lasing is, 

   12~~
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Suppose the complex field amplitude reflection coefficients at the two facets are 1r  and 2r , and  

2
11 rR   and 2

22 rR  . We can write the reflection coefficients in terms of a magnitude and phase, 
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The roundtrip condition for the field amplitude for lasing is, 
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The above complex relation implies, 
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The phase condition states that the roundtrip phase of a cavity mode must be an integral multiple of 2 . 
This implies that only those values of  are possible that satisfy, 
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The spacing  between two adjacent allowed values of  (and therefore between two adjacent cavity 
modes) is, 
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The allowed values of   correspond to the longitudinal modes of the cavity. The spacing in frequency 

  between the longitudinal modes can be found as follows, 
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We can write,  

 
T

 2
  

Here, T  is the roundtrip time of the cavity. The frequency spacing between adjacent cavity modes is 
called the free spectral range of the cavity. It is more commonly expressed as wavelength spacing, 
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The above example shows that by following the wave through one roundtrip, one can obtain the lasing 
condition (and therefore the threshold gain) and also the allowed modes of the cavity. The cavity we 
considered was a simple Fabry-Perot cavity. For more complex cavities, such as the VCSEL cavity, one 
needs better and more sophisticated methods. In the next Section, we will introduce the S-matrix and the 
T-matrix approach and then we will use it later to analyze the VCSEL cavity.  
 
 
12.1.2 Mirror Reflectivities and Output Power: 
Consider a Fabry-Perot optical cavity with mirror reflectivities 1R  and 2R . The optical power comes 
from out both mirrors of the laser cavity and the total output power is, 
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The output power is usually collected form only one mirror of the laser and the question is how the output 
power is distributed among the two mirrors. Consider the Fabry-Perot laser cavity shown below. If the 

optical power travelling in the cavity in the +z-direction at Lz   is  LP , then the optical power 

coming out of the right mirror of the cavity is   22 1 RLPP   . Similarly, if the power travelling in 

the cavity in the -z-direction at 0z  is  0P , then the optical power coming out of the right mirror of 

the cavity is   11 10 RPP   . We must have, 
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In order to uniquely determine 1P  and 2P  we must obtain one more expression relating them. We have, 

      LgaeRLPP ~~
20    

Using the lasing condition, 

    12~~
21  LgaeRR   

 we get, 
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The above expression shows that more power comes out of the less reflective mirror. We can now write, 
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If one wants most of the power to come out from any one of the two mirrors, then that mirror must have a 
low reflectivity and the other mirror must have a high reflectivity. 
 
 

12.2 The S-Matrix and the T-Matrix Techniques 
 
12.2.1 Introduction: 
Consider a dielectric interface with two normally incident waves with transverse components, 
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and two outgoing plane waves, 
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The amplitudes of the outgoing waves can be related to those of the incoming waves through the S-
matrix, 
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Note that 
2

11S  and 12
2

21 nnS  represent the reflectivity and the transmittivity, respectively, for a 

wave incident from the left, and 
2

22S  and 21
2

12 nnS  is the represent the reflectivity and the 

transmittivity, respectively, for a wave incident from the right. Whereas the S-matrix relates the 
amplitudes of the outgoing waves to that of the incoming waves, the T-matrix relates the amplitudes of 
the waves on the left side of the interface to that of the waves on the right side of the interface,  
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The relation between T-matrix and S-matrix coefficients is, 
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or, 
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So for the dielectric interface considered above, the T-matrix is, 
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Now consider free propagation of waves (without reflections), as shown below. The S- and T-matrices 
are, 

 T-matrix:  
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If the medium has gain/loss then the S- and T-matrices become, 

 T-matrix: 
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 S-matrix: 
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12.2.2 Fabry-Perot Cavity Treated via S-Matrix and T-Matrix: 
Now we have all the ingredients needed to analyze a simple Fabry-Perot Laser cavity using S- and T-
matrices. We shall see blow how the S-matrix and the T-matrix can be used to calculate the frequencies of 
the cavity longitudinal modes as well as the threshold gain for the laser. Consider the Cavity shown 
below. 

 
The T-matrices can be concatenated as shown below enabling one to obtain the T-matrix of the entire 
cavity, 
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Once the T-matrix of the structure has been calculated this way, the S-matrix of the whole structure can 
be obtained by using the formulas described earlier, 
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Lasing means light coming out of the cavity even when no light is going into the cavity, i.e. 01 b  and 

01 a  even when 01 a  and 04 b . How can this be stated in the language of the S-matrix? Looking 

at the equation above, one can have 01 b  and 04 a  even when 041  ba  provided the 

coefficients of the S-matrix are infinite. For example, for the cavity under consideration, 21S  is, 
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21S  is infinite if the denominator is zero. The denominator is zero when, 
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Note that ar  is the reflection coefficient for a wave incident from outside the cavity on the left mirror of 
the cavity. The lasing condition given above is the same as the one obtained earlier if we realize that, 
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One can write, 
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Information about the cavity modes and the threshold gain can be obtained from the S-matrix (and in 
particular from the coefficient 21S ). Below we discuss how to extract this information step by step.  

 

Step 1: Assume 0~ g  (passive cavity) and plot 
2

21S  as a function of  . The longitudinal modes of 

the cavity correspond to those values of   for which 
2

21S  has a maximum (i.e. has a resonance). We 

can see from the expression above that 
2

21S  has a maximum when, 
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  ...3,2,1 n
L
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From the knowledge of   as a function of  , the frequencies of the cavity modes can be computed. The 

Figure above shows 
2

21S  plotted as a function of   for different values of the cavity facet (mirror) 

reflectivities assuming 0~  . The resonances in 
2

21S  correspond to the cavity longitudinal modes. 

Resonances in 
2

21S  become narrower when the cavity mirrors have higher reflectivities and/or the 

waveguide losses are smaller. If the resonances are sharp and narrow, one can obtain the width of a 
resonance by expanding   around the resonance. Suppose, 
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The full width at half maximum of the resonance is, 
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The width of the resonance in frequency is therefore, 
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Photon Lifetime and Cavity Quality Factor: The term “cavity mode photon lifetime” is usually associated 
with the inverse of the width of the resonance in frequency, 
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Earlier, we had derived the following expression for the photon lifetime in a Fabry-Perot cavity, 
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The above two expression for the photon lifetime are not too different. The difference is due to the fact 
that the photon density in a Fabry-Perot laser cavity in the presence of gain or internal loss is not uniform 
along the length of the cavity (as was also seen in our analysis of the SOAs). The difference disappears if 
the cavity losses are small, 
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A cavity with smaller losses requires smaller gain to achieve lasing threshold and, therefore, the photon 
density distribution long the length of the cavity is also more uniform during laser operation. The photon 
lifetime for any optical cavity can be (with certain rare exceptions) put in the form, 

intext

111

ppp 
  

Here, the first term on the right hand side describes cavity loss rate due to photons escaping from the 
cavity into the external world (e.g., the mirror loss) and the second term on the right hand side describes 
cavity loss rate due to photons getting absorbed inside the cavity. The cavity quality factor Q  is defined 
as, 

 pQ 
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Since 
2

21S  is the transmittivity through the cavity, the maximum value of 
2

21S  at a resonance is unity 

when 0~  . When 0~  , the maximum value of 
2

21S  is less than zero, as shown in the Figure 

above. 
 
Step 2: Now suppose the material gain g~  is not zero. As g~  is increased from zero, the cavity resonances 

become very sharp and the maximum values of 
2

21S  (which occur when  nL  ) become very large 

and exceed unity. When the gain reaches the threshold gain thg
~  the maximum values of 

2
21S  become 

infinite. The recipe for obtaining the threshold gain g~  is as follows. Choose one of the allowed values of 

  found in step 1 above, and using this value of   plot 
2

21S  as a function of the gain g~ . The value of 

g~  for which 2
21S  corresponds to the threshold gain 

th
g~ . Consider a Fabry-Perot cavity with 

3.021  RR , 1.0~ L , and 1.0a . Using the expression, 
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the threshold gain Lgth
~  is found to be 13.04. The plot of 

2
21S versus the material gain is shown below 

(the value of  is chosen to be an integral multiple of  ). The value of Lg~  for which 2
21S  is the 

threshold gain Lgth
~ . This technique gives the same value of the threshold gain.  

 
12.2.3 Distributed Bragg Reflectors (DBRs): 
Stacks of multiple dielectric layers are frequently used to perform a variety of tasks in optics. One 
important use of such a stack is in the realization of high reflectivity mirrors. A DBR mirror consists of 
alternating dielectric layers of indices 1n  and 2n  forming a periodic structure. One period consists of two 

layers; one layer with index 1n  and one layer with index 2n . In a DBR mirror with a peak reflectivity at 

the (free-space) wavelength  , the phase accumulated by a wave propagating through one complete 
period must be  .  

  2211 LL  
In most cases, in order to meet the above condition, the thickness of each layer is chosen such that the 
phase accumulated by a wave propagating through the layer is 2 ,  
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The thickness of each layer is therefore one-quarter of the wavelength of light in that layer. The 

reflectivity of a DBR mirror is wavelength dependent. The reflectivity  2r  as a function of the 

wavelength   can be obtained by calculating the S-matrix coefficient  11S  as a function of  . 
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This Figure above shows a plot of the reflectivity     2 rR   as a function of the wavelength   for 

0.330  nn  and 0.32 n , and the value of 1n  is varied from 3.1 to 3.5. Suppose the maximum 

reflectivity occurs at the (free-space) wavelength B . For the m-period DBR structure shown in the 

Figure above, the reflection coefficient at B   can be obtained by using the S-matrix analysis and 
comes out to be, 
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The peak reflectivity   2
Br   depends on the ratio 12 nn  as well as on the number of periods m . If 

12 nn  , then  Br   approaches +1 as the number of periods is increased, and if 12 nn   then  Br   

approaches -1 as the number of periods is increased. As the wavelength is changed from B , the 

reflectivity  2r  decreases.  

 
The DBR is the simplest example of a 1D photonic crystal structure. In the limit m , the DBR stack 
develops frequency bands, called the stop bands or bandgaps, such that light within these bands is unable 
to propagate within the stack and is therefore completely reflected from the ends. These bandgaps emerge 
as a result of Bragg scattering of light form the periodic dielectric structure much like the bandgaps that 
appear in the energy spectrum of electrons in crystals because of Bragg scattering of the electrons from 
the periodic potential of the atoms. The peak reflectivity occurs when the wavelength of the incident light 
equals the Bragg wavelength B  of the DBR mirror. When the wavelength of the incident light is equal 
to the Bragg wavelength of the DBR mirror, the reflected waves from every period of the structure add 
constructively in the backward direction thereby enhancing the reflectivity.  
 
The Figure below shows the intensity of a wave incident on a DBR mirror with wavelength equal to the 
Bragg wavelength of the DBR mirror. The reflectivity of the mirror is near unity and the envelope of the 
wave intensity decays exponentially within the mirror. Note that the wavelength of the incident wave is 
within the bandgap of the DBR mirror and that is why the wave intensity envelope decays exponentially 
within the mirror. For the same reason, in a quantum well the envelope function of the electron 
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wavefunction in the effective mass approximation decays exponentially inside the barrier region. If the 
number of periods in a DBR mirror is small, incident light with wavelength within the bandgap can tunnel 
through the mirror, similar to how electrons tunnel through thin heterostructure barriers, and the DBR 
reflectivity will be small.  

 
 
 
 

12.3 Vertical Cavity Surface Emitting Laser (VCSEL) 
 
12.3.1 Introduction: 
The VCSEL has become the work horse of modern fiber optic communication links. The structure of a 
VCSEL is shown in the Figure below. VCSEL uses two high reflectivity DBR mirrors to make an optical 
microcavity and the gain region (which usually consists of few quantum wells) is placed in the middle of 
the microcavity. The details of the microcavity and the active region are shown below. The mode field 
inside the VCSEL microcavity propagating in the forward direction can be written as, 
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The transverse mode profile, and the number of supported transverse modes, are both determined by the 
transverse dimensions of the cavity. Assuming weak transverse mode confinement (large area device), the 
propagation vector in each layer is related to the index in that layer by the simple relation, 

 n
c

   

The group velocity of the mode in each layer is then equal to the material group velocity, 
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g v
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Suppose the top and bottom DBRs have reflection coefficients 1r  and 2r  and both are approximately 
equal to -1. Consider a wave inside the microcavity bouncing back and forth between the two mirrors 
(ignore the quantum wells for now). The roundtrip condition for the phase is, 
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Different values of   correspond to different longitudinal modes of the cavity. Since the mirror 
reflectivities are close to unity, the forward and backward waves must have the same magnitudes and 
therefore the field amplitude inside the cavity must be proportional to either  zcos  or  zsin . Since 
the mirror reflection coefficients are approximately -1, the field amplitude at the mirrors must be close to 
zero as a result of destructive interference between the incident and the reflected waves. If the field 
amplitude inside the cavity is proportional to  zcos , then, 
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Here, cn  is the index of the cavity region. The smallest cavity would have a length equal to half the 
wavelength of light in the cavity region. 

 
If the field amplitude is proportional to  zsin  then, 
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The smallest cavity would then have a length equal to the wavelength of light in the cavity region. If the 
field amplitude is proportional to  zsin  then the field intensity will be zero or very small in the middle 
of the cavity where the quantum wells are usually located. Therefore, the cavity lengths are chosen such 
that the sine modes are eliminated. In most cases, the cavity length is half the wavelength of light in the 
cavity region, as shown in the Figure above, and therefore the cavity supports only a single longitudinal 
mode (the lowest one). A single transverse mode and a single longitudinal mode imply that the VCSEL 
would have only a single cavity mode.  
 
The lowest cavity longitudinal mode satisfies the condition, 
  L  
If the cavity region consists of layers with different indices, such as multiple quantum wells, then the 
lowest cavity longitudinal mode is given by the condition, 
  

k
kkL  

where, k  is the propagation vector in the k-th region of thickness kL  inside the cavity. 
 
In the presence of material gain or loss, the index and the propagation vector in each layer acquire 
imaginary parts, 
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Note that since the mode group velocity in each layer is assumed to be equal to the material group 
velocity (weak transverse mode confinement assumption), gg ~  and  ~ . 
 
12.3.2 S-Matrix and T-Matrix Analysis of VCSELs: 
S- and T-matrices provide the simplest computational technique to determine the wavelength of the cavity 
mode as well as the threshold gain. To illustrate the technique, we consider a 850 nm sGaAs/AlGaA

VCSEL shown in the Figure below. The bottom DBR is made of 30 periods of 
AsGaAs/AlGaAl 0.10.90.80.2  layers whose indices at 850 nm are 3.49/3.06, respectively. The top DBR is 

made of 25 periods of AsGaAs/AlGaAl 0.10.90.80.2  layers. The optical cavity is made of 

AsGaAl 0.80.2  with three 80 A GaAs quantum wells embedded in the center of the cavity separated by 

80 A AsGaAl 0.80.2  barriers. The index of GaAs at 850 nm is 3.65. The substrate is GaAs (index 

3.65), and the top most layer (also called the cap layer) is assumed to be AsGaAl 0.80.2 .  
 
DBR Mirrors:  
If the DBRs are to have a maximum reflectivity at 850 nm, the Bragg wavelength B , then the 

thicknesses of the AsGaAl 0.80.2  and 0.10.9GaAl  layers in the DBR need to be  49.34B  and 

 06.34B , respectively. The S-matrix and the T-matrix techniques can be used to calculate the 
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reflectivities of the two DBRs. Assuming 0  for all DBR layers, the reflectivities, 1R  and 2R , of the 
bottom and top DBRs, respectively, at 850 nm are found to be,  

998562.01 R                  

994433.02 R  
VCSEL mirror reflectivities are typically close to unity. Material losses in DBRs, if present, can decrease 
the DBR reflectivities. For lossless DBR mirrors one must have, 
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If the DBR mirrors have internal losses (due to free-carrier absorption, for example) then, 
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Microcavity Mode: 
The thicknesses of the layers in the cavity region must satisfy the following condition in order to allow 
only the lowest longitudinal mode, 
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Using the S- and T-matrix techniques, we calculate the transmittivity, given by subcap nnS
2

21 , of a 

wave going from the substrate into the cap layer as a function of the wavelength while assuming that the 
values of gain g  and the loss   are zero for all layers. The results are shown in the Figure below. The 
transmittivity is very small for wavelengths within the bandgap of the two DBRs. However, at the 
wavelength corresponding to the cavity mode, the transmittivity is very high. This behavior is similar to 
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what was seen in the case of the Fabry-Perot cavity where resonances in 
2

21S  corresponded to the 

cavity longitudinal modes. The cavity mode wavelength obtained from the S-matrix analysis is, 
0.850677 o  m which is close to the intended design wavelength. One needs the wavelength of the 

cavity mode to this much accuracy in order to calculate the threshold gain, as discussed below.   
 

 
 
Threshold Gain and Cavity Photon Lifetime: 
Once the wavelength of the cavity mode has been determined, the next step is to find the threshold gain.  
The total cavity loss consists of the cavity internal loss, described by the value of   for each layer, and 
the mirror loss due to photons escaping from the cavity from the two DBR mirrors into the outside world. 
We will first assume that 0  for all layers and the only source of photon loss is the cavity mirror loss. 
In order to calculate the threshold gain, we assume that the wavelength is equal to the computed cavity 

mode wavelength o , and plot 
2

21S  as a function of the material gain g  and see which value of the 

gain makes 
2

21S  infinite. Numerical errors will not let you see 
2

21S  actually become infinite at the 

threshold gain, but it is easy to identify the gain value for which 
2

21S  peaks. The Figure below shows 

2
21S  plotted as a function of the active region material gain. 

2
21S  peaks when 803 thgg  1/cm.  

 

DBR mirror 
bandgap 
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To proceed further, we need to have more knowledge about the cavity mode. More specifically, we need 
to find the active region mode confinement factor a . A slightly modified version of the T-matrix 
analysis, explored in detail in the homework set, allows the computation of the cavity mode. The results 
are displayed in the Figure below which shows the longitudinal mode intensity in the entire device.  
 

 

The Figure above shows that the mode intensity has the expected  z2cos  dependence inside the cavity 
(where z  is measured from the center of the cavity). A considerable amount of mode energy is also 
present within both the top DBR and the bottom DBR. The envelope of the mode intensity decays 
exponentially inside the DBRs. Once the optical mode has been obtained, the mode confinement factor 
for the active region can be obtained using, 
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For the mode shown in the above Figure, the active region mode confinement a  is .0619. Knowing the 

threshold gain thg  and a , one can calculate the mirror loss m  using the expression, 

 mtha g   

The value of m  comes out to be approximately 50 1/cm for the cavity under consideration. Once m  
has been determined this way, one can repeat the calculation of the threshold gain but this time let the loss 
  in each layer have its actual value. The value of the threshold gain thus obtained would correspond to 
the total cavity loss, 
 imtha g    
Here, i  is the total cavity internal loss and its value can be obtained from the above equation. There is 
an important assumption being made here; the mirror loss and the cavity internal loss are additive. This 
assumption will hold if the cavity internal loss, especially the contribution to it from the loss in the DBR 
mirrors, is not too large. Cavity photon lifetime is related to the total cavity loss as follows, 
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where M
gv  is the material group velocity in the active region.  

 
Output Power: 
The output coupling efficiency is, 
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Suppose the output power is only collected form the top DBR mirror. If the DBR mirrors are lossless 
then, 

 
 

    












im

m
o

RRRR

RR





2112

12

11

1
 

The output coupling efficiency in the case of lossy mirrors becomes, 
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The expression that works in both cases is, 
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12.3.3 VCSEL Rate Equations: 
The VCSEL rate equations can be written as follows, 
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Here, M
gv  is the material group velocity in the active region.  

 
 
12.3.4 Another Look at VCSELs: 
With the benefit and availability of sophisticated numerical techniques for solving complex eigenvalue 
problems, the analysis of optical micro- and nanocavities can be performed in an altogether different way. 
We consider here a technique that can be applied to any optical cavity but will consider the VCSEL cavity 
as an example.  

 
The time-dependent field in the complex time-harmonic notation is, 

     tierEtrE 


Re,  
The complex wave equation, 

Light 

VCSEL
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can be considered a generalized eigenvalue equation of the form,   

 vBvA   

where the frequency 2  is the eigenvalue, as long as the dispersion of the index is ignored. In the first 
step, one assumes that the gain and the loss in every layer is zero. The wave equation can be solved 
numerically with outgoing waves as a boundary condition to yield complex eigenvalues and the 

corresponding eigenvectors. Since the assumed time dependence of the field is tie  , the real part of the 
eigenvalue corresponds to the cavity mode frequency and the imaginary part corresponds to the cavity 
photon lifetime due to photon loss from the cavity, 
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The corresponding eigenvector is the field of the cavity mode. In what follows we assume that the cavity 
supports only a single mode. One can now repeat the procedure above and this time include the cavity 
internal losses. The imaginary part of the frequency will now correspond to the cavity photon lifetime due 
to photon loss from the cavity as well as due to the cavity internal losses, 
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the above technique allows the computation of the cavity mirror and internal losses. In the third and last 
step, one can include the cavity gain in a perturbative way. Suppose the gain is included as an index 
perturbation and the change in the index is  rn  , 
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Using the complex cavity eigenmode obtained in the second step above, the change in the cavity 
frequency due to an index change can be calculated using first order perturbation theory, 
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Here, M
gn  without any spatial dependence is assumed to be the material group index of the active region. 

The ratio of the integral in the above expression is the familiar active region mode confinement factor a
. Therefore, 
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A positive imaginary part of the complex frequency implies a field amplitude gain of  2gvMga  and a 

field energy gain of gvMga , as expected.  

 
12.3.4 Some State of the Art VCSEL Structures: 
VCSELs are popular in applications requiring 850 nm light. These applications include short distance 
single-mode and multi-mode optical fiber links, such as those used in local area network (LANs), board-
to-board communication in optical routers (CISCO), and in supercomputers. One device commonly used 
for single cavity mode applications is the oxide apertured VCSEL, shown in the Figure below. In this 
device, a layer of AlGaAs is oxidized to give an aluminium oxide layer, which is an insulator and has a 
small refractive index compared to III-V semiconductors. The oxide aperture helps confine the optical 
mode in the transverse direction and allows only a single transverse mode to lase. In addition, the oxide 
aperture helps to confine the current as well and enables current pumping of only that part of the active 
region where the lowest order lasing optical mode resides thereby reducing the laser threshold current. 
Higher order transverse modes are more spread out in the transverse dimensions, and see more of the 
unpumped active region and, therefore, experience more loss and find it difficult to lase.   

 
 
Single cavity mode VCSELs operating at 1300 nm can be realized, for example, by using InGaAsN 
quantum well in place of GaAs quantum wells, as shown in the Figure above. 1300 nm VCSELs are used 
for longer distance optical fiber links, such as those used in metro area networks (MANs).  
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1550 nm VCSELs are more challenging because they require InGaAsP quantum wells on InP substrates 
and for a long time there were no good dielectric layers that could be used for DBRs and that are also 
lattice matched to the InP substrate. Wafer fusion, a relatively crude process in which two semiconductor 
wafers are thermally fused under pressure, was been used to realize the first 1550 nm VCSELs with 
GaAs/AlGaAs DBR layers and InGaAsP active region. With the improvement in material growth 
technology, AlAsSb/AlGaAsSb DBR mirrors were grown on InP substrates and integrated with InGaAsP 
active regions to realize a 1550 nm VCSELs. The structure of such a device is shown in the Figure above. 
 
 
 

12.4 Purcell Enhancement and Suppression of Spontaneous Emission 
Rates in Optical Microcavities 
 
12.4.1 Introduction: 
The spontaneous emission rate TspR  (units: number of photons emitted per unit volume of the gain 

material) for photon emission into all radiation modes for a bulk semiconductor is given by the 
expression, 
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The spontaneous emission rate depends on the photon density of states given by  pg  which for bulk 

medium equals, 
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Note that the total number of radiation modes in any frequency interval of interest between 1  and 2  is 
given by the integral, 
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 dgV pp  

The photon density of states can be modfied drastically in optical cavities specially those of very small 
dimensions. For example, an optical cavity like the VCSEL can be designed to support just a single cavity 
mode (in the frequency range of interest). Compared to spontaneous emission rates in bulk media, 
spontaneous emission rates in optical cavities can be both enhanced or suppressed significantly and this 
phenomenon is called the Purcell Effect.  
 
12.4.2 Photon Density of States in Optical Microcavities 
Consider an optical microcavity with only a single cavity mode of frequency o  (in the frequency range 

of interest between 1  and 2 ), cavity photon lifetieme p , and modal volume pV . We need to find the 

photon density of states  pg  which must satisfy, 
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We assume that the cavity frequency spectrum is Lorentzian (as in the case of the VCSEL) and the full 
width (at half maximum) of the cavity resonance is p1 . This implies that, 
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12.4.3 Spontaneous Emission Rates in Microcavities: 
Consider now the spontaneous emission rate (per unit volume of the gain material) in an optical 
microcavity. Using the expression obtained above for the for the photon density of states we get, 
 
There are two cases of interest in which the above integral can be evaluated analytically. First consider 
the situation where the gain bandwidth is much broader than the width of the cavity resonance. This is the 
situation in most semiconductor devices. All terms in the integrand other than the Lorentzian can be 
evaluated at the peak of the Lorentzian and the integral can then be performed easily to get, 
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The expression above is the familiar result we had derived earlier. If the mode volume pV  is small 

enough, the spontaneous emission rate in a microcavity can exceed the spontaneous emission rate in a 
bulk semiconductor despite the fact that the spontaneous emission in a microcavity is going into just a 
single mode.  
 
Now consider the case where the gain bandwidth is smaller than or comparable to the width of the cavity 
resonance. This situation can arise, for example, when the gain medium consists of semiconductor 
quantum dots. In this case, we can write the frequency dependence of the gain as a Lorentzian function, 

      
   22

2







g

spo
M
gsp

M
g ngvngv  

Here, og  is the peak gain. The spontaneous emission rate is, 
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If the center frequency of the gain spectrum and the cavity mode frequency are far away from each other, 
then the spontaneous emission rate is completely suppressed since there is no cavity mode within the gain 
bandwidth into which photons can be emitted. The spontaneous emission rate is maximum when 

og    and the cavity resonance is aligned with the gain spectrum. In this case, 
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If the width of the cavity resonance is much wider than the gain spectrum then, 
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In this limit, the spontaneous emission rate increases with the quality factor of the optical mode.  
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