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Chapter 11 
 
Basics of Semiconductor Lasers 
 
 
11.1 Introduction 
 
11.1.1 Introduction to Semiconductor Lasers: 
In semiconductor optical amplifiers (SOAs), photons multiplied via stimulated emission. In SOAs 
photons were confined in the dimensions transverse to the waveguide but were allowed to escape from the 
end of the waveguide. We now consider optical cavities in which the photons are confined in all three 
dimensions and kept inside the cavity for much longer durations allowing them to multiply via stimulated 
emission and thereby generating a large population of photons inside the cavity. The simplest way to 
realize an optical cavity is to take an SOA waveguide and coat both the input and output facets with a 
high-reflectivity (HR) optical coating (SOAs generally have an anti-reflecting (AR) coating on the input 
and output facets). The optical cavity thus obtained is called a Fabry-Perot cavity and is shown below.      
  

 
Suppose the modal gain is ga

~  and the facet reflectivities are 1R  and 2R . If one follows a guided mode 
through one complete roundtrip of the cavity, one finds that the change in optical power after one 
complete roundtrip  is, 

   LgaeRR 2~~
21

  

When g~  is small such that,   12~~
21  LgaeRR  , any photons introduced into the cavity will 

eventually leave the cavity (it will either be transmitted out of the cavity through either one of the two 
facts of the cavity or it will leave the cavity by being absorbed in the cavity because of the modal loss ~ ). 

The question that arises is what if the gain g~  is made large enough such that   LgaeRR 2~~
21

  
approaches unity? In this case, the number of photons lost in one complete roundtrip from the facets or 
due to the waveguide loss equals the increase in the number of photons in one roundtrip due to stimulated 
emission. In other words, the cavity gain per roundtrip equals the cavity loss per roundtrip. The condition, 

   12~~
21  LgaeRR    

is the lasing condition. When this condition is satisfied, a large photon population can build up inside the 
cavity starting from spontaneous emission and we have a laser (light amplification from stimulated 
emission of radiation).  
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The simplest way to analyze and understand laser dynamics is using rate equations. In this Chapter, we 
will setup laser rate equations using the Fabry-Perot optical cavity as a model.  
 
 

11.2 Photon Density Rate Equation 
 
11.2.1 Laser Threshold Gain: 
The value of the material gain that satisfies the lasing condition, 

   12~~
21  LgaeRR    

is called the threshold gain thg~ . We can write the expression for the threshold gain as, 
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The threshold gain is function of the parameters of the optical cavity. The lasing condition states that 
photons multiply via stimulated emission at the same rate inside the cavity as the rate at which they are 
being lost from the cavity. There are two sources of loss; the loss from the facets (or the mirrors) of the 
cavity and the intrinsic loss ~  from the waveguide. We can define a mirror loss m~  as follows, 
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The lasing condition then becomes, 
  ~~~  mthag  
 
11.2.2 Effective Mode Volume: 
For the Fabry-Perot optical cavity, the volume of the active region is WhLVa  . Here, W  is the width of 

the active region and h  is the height of the active region. The area of the active region is WhAa  . The 

effective area of the mode is aaeff AA   and the effective volume of the mode is LAV effp  .  

 
We now generalize the definition of the mode volume to all types of optical cavities. For any optical 
cavity, the optical mode confinement factor a  for the active region is equal to the ratio of the mode 
energy in the active region to the total mode energy, 
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Suppose the total number of photons in the cavity is pN  and the average photon density in the active 

region is pn , then, 

 
p

ap
a N

Vn
  

The effective mode volume pV  is defined by the expression, 

 
a

a
p

V
V


  

This definition implies that the total number of photons pN  can be written as, 

 ppp VnN   

Note that for the Fabry-Perot cavity, 
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11.2.3 Cavity Optical Gain: 
Consider an optical cavity with pN  photons. The rate of stimulated emission (number of stimulated 

transitions per second per unit volume of the active region) is p
M
g gnv . If the cavity is a Fabry-Perot 

cavity then the stimulated emission rate is usually written in terms of the waveguide group velocity gv  

as, pg ngv ~ . Assuming a Fabry-Perot cavity, the total stimulated emission rate in the active region is, 

apg Vngv ~ . But, 

 pgap
p

a
pgapg NgvV

V

V
ngvVngv ~~~   

Photon multiplication in the cavity due to stimulated emission can be expressed as, 

 pga
p

Ngv
dt

dN ~  

The quantity gvga
~  is the cavity optical gain since it describes the rate of increase of the number of 

photons inside the cavity due to stimulated emission. 
 
 
11.2.4 Cavity Optical Loss and Cavity Photon Lifetime: 
Cavity photon lifetime p  expresses the rate at which photons are lost from the cavity, for example, by 

escaping from the end facets of a Fabry-Perot cavity or by getting absorbed in the cavity material 
(excluding stimulated absorption in the active region). The rate of photon loss is, ppN  . The total rate 

of change of photon number in the cavity is therefore, 

 p
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The first term inside the bracket on the right hand side describes optical gain and the second term 
describes the optical loss. The condition for lasing is that the rate of increase of photon number due to 
stimulated emission (optical gain) is equal to the rate of decrease of photon number due to loss. In other 
words, the threshold gain must satisfy, 
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p

thga gv

1~   

Using the expression obtained earlier for the threshold gain of a Fabry-Perot cavity, 
  ~~~  mthag  
we get an expression for the photon lifetime of a Fabry-Perot cavity, 
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For more complex optical cavities, numerical methods are generally employed to calculate photon 
lifetimes, as we will see in the following Chapters. Once the photon lifetime has been determined, the 
threshold gain can be calculated. 
 
 
11.2.5 Spontaneous Emission: 
The rate equation for the photon number, 
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does not consider the increase in the photon number due to spontaneous emission. Remembering that the 
spontaneous emission rate equals the stimulated emission rate assuming one photon in the optical mode, 
one can write, 

 spgap
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The spontaneous emission factor spn  is needed here since the gain g~  is related to the net stimulated rate 

(stimulated emission rate minus the stimulated absorption rate).  The above equation is usually expressed 
not in terms of the total photon number pN  but in terms of the average photon density pn  in the active 

region by dividing both sides by pV , 
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The above equation is the main result that we will use throughout this Chapter.  
 
 
 

11.3 Carrier Density Rate Equation 
 
11.3.1 Carrier Density Rate Equation: 
We assume that the active region of the laser is biased with a current source, as shown below.  
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The rate equation for the carrier density is the same as the one used for SOAs, 

 
          pgrrnrnr

a

i ngvnGnRnGnR
qV

I

dt

dn ~


 

The non-radiative recombination-generation rates and the radiative recombination-generation rates due to 
spontaneous emission into all the radiation modes are expressed as follows, 

      322)( CnAnnnnCnnAnGnR iinrnr   

    222)( BnnnBnGnR irr   
The gain is also a function of the carrier density and this dependence is usually approximated by a 
logarithmic function, 
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11.3.2 Threshold Carrier Density: 
The carrier density at which the gain g~  equals the threshold gain thg~  is called the threshold carrier 
density. If, 
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11.4 Laser Rate Equations 
 
11.4.1 Laser Rate Equations: 
We can now write down the laser rate equations for the photon density and the carrier density as follows, 
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    (1) 

 

           pgrrnrnr
a

i ngvnGnRnGnR
qV

I

dt

dn ~


 (2) 

The above two coupled nonlinear equations can exhibit a wide variety of dynamics associated with the 
operation of semiconductor lasers.  
 
11.4.2 Laser Output Power: 
We also need expressions for the light coming out of the laser. Photons leave the cavity in two ways; they 
can either escape from the end facets (or mirrors) or they can get absorbed by the cavity. Only the photons 
that leave the cavity from the mirrors constitute useful output. We define an output coupling efficiency 

o  of the laser as, 
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The output coupling efficiency o  is equal to the fraction of the photons leaving the cavity from the end 
facets (or mirrors). The total number of photons leaving the cavity per second is, 
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The number of photons leaving the cavity from the mirrors is therefore, 

 
p

pp
o

p

p
o

VnN





   

The output power P  of the laser is. 
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11.5 Operation of Semiconductor Lasers 
 
11.5.1 Introduction: 
The nonlinear laser equations can easily be solved numerically on a computer. However, more insight is 
obtained using approximate analytical solutions in different regimes of operation. We need to solve 
Equations (1) and (2) above in steady state for different values of the current bias. Steady state implies, 

0 dtdndtdnp . So the equations that need to be solved are, 
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           pgrrnrnr
a

i ngvnGnRnGnR
qV

I ~


  (4) 

 
 
11.5.2 Regime I ( trnn  ) – Laser below Threshold:  

Suppose the current is switched on from zero and is small enough such that trnn   and the gain is 

negative. Any photons emitted spontaneously into the cavity will experience loss from the mirrors ( m~ ), 

from the waveguide (~ ), as well as from the active region. Photons will therefore not last for long inside 
the cavity and the photon density inside the cavity will be very small. In this regime, one can ignore the 
stimulated emission term in Equation (4) and determine carrier density from the equation, 

          nGnRnGnR
qV

I
rrnrnr

a

i 


   (5) 

Once the carrier density has been determined using Equation (5) above for a given current bias, the 
photon density can be determined using Equation (3) above.  
 
 
11.5.3 Regime II ( thtr nnn  ) – Laser below Threshold: 
As the current is increased, the carrier density will increase as dictated by Equation (5) above. At some 
point the carrier density will exceed the transparency carrier density and the gain will become positive. 
Photons emitted spontaneously into the cavity will multiply via stimulated emission. Since thnn  , and 

thgg ~~  , the photon multiplication rate is not large enough to balance the photon loss rate from the 
cavity and therefore the photon density in the cavity will be small. Again, one can ignore the stimulated 
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emission term in Equation (4) and determine carrier density from Equation (5) and once the carrier 
density has been determined using Equation (5) for a given current bias, the photon density can be 
determined using Equation (3).  
 
 
11.5.4 Regime III ( thnn  ) – Laser near Threshold: 
As the current is increased further, at some current value the carrier density, as predicted by Equation (5), 
will equal the threshold carrier density thn . The current for which the carrier density, as predicted by 
Equation (5), equals the threshold carrier density is called the threshold current and is given as, 

          thrthrthnrthnr
a

thi nGnRnGnR
qV

I



  (6) 

When the carrier density n  equals the threshold carrier density thn , the gain g~  equals the threshold gain 

thg~  and the photon density, as given by Equation (3) is infinite because the denominator is zero.  In fact, 
if the carrier density were to exceed the threshold carrier density, the photon density, as given by 
Equation (3), would be negative – an obviously unphysical result. What is happening is that as the current 
is increased, and the carrier density increases and approaches the threshold carrier density, the gain 
approaches the threshold gain. As the gain increases, the simulated emission rate increases and 
approaches the rate at which the photons are lost from the cavity. Every photon in the cavity now has a 
chance to multiply before it is lost from the cavity and so the steady state photon population inside the 
cavity also increases. Equation (3), reproduced below, 
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predicts that as the gain g~  approaches the threshold gain thg~ , and optical gain gvga
~  approaches the 

optical loss p1 , the steady state photon density increases significantly because the denominator 

approaches zero. When the photon density becomes very large, Equation (5) is no longer valid because 
carrier recombination rate due to the stimulated emission cannot be ignored compared to the other non-
radiative and radiative recombination rates. Therefore, Equation (4) has to be used to calculate the carrier 
density in steady state. Equation (4) shows that as the photon density increases significantly, the 
stimulated emission rate pga ngv ~  also increases and keeps the carrier density, and therefore the gain, 

from increasing as much with current as when the stimulated emission rate is ignored. In fact, because the 
photon density increases drastically when the optical gain gvga

~  gets close to the optical loss p1 , the 

increased stimulated emission rate never allows the carrier density to ever exceed the threshold carrier 
density thn  and, therefore, the gain never exceeds the threshold gain thg~ . This gain saturation brought 
about by a large photon density is needed to stabilize the photon density inside the cavity. If the optical 
gain were to exceed the threshold gain then the photon multiplication rate due to stimulated emission 
would exceed the photon loss rate and the steady state photon density would increase to infinity. In other 
words, there would be no steady state and this is the reason why Equation (3) predicts a negative photon 
density for pga gv 1~  .  

 
The Figure below shows the carrier density and the photon density vs. the current for regimes I-III.  
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11.5.5 Regime IV ( thnn  ) – Laser above Threshold: 

When the current is increased beyond the threshold current thI , the photon density becomes so large that 
the resulting increased recombination due to stimulated emission prevents the carrier density from 
increasing beyond thn . The carrier density gets fixed at a value close to (but less than) thn . To find the 

photon density when thII  , we start from Equation (4) and subtract Equation (6) to get, 
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Since for thII  , thnn   and pgath vgg  1~~ , the term inside the curly brackets is close to zero, 

and we get, 
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The above equation shows that the photon density increases linearly with the current when the current 
exceeds the threshold current. The point where thII   is called the “threshold for lasing” or just as the 

“laser threshold.” Above threshold, the carrier density n , and the optical gain g~ , remain fixed to their 
values at threshold, and the photon density increases with the current and the corresponding increase in 
the stimulated emission rate is just enough in order to maintain the carrier density at its threshold value as 
the current is increased. The Figure below shows the carrier density and the photon density vs. the current 
for a laser operating below and above threshold. The rapid buildup of photon population when thII   is 
called lasing.  
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11.5.6 Laser Output Power above Threshold: 
The output power of the laser is the power coming out from the two end facets of the laser cavity. Since, 
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the laser power above threshold in terms of the current is, 
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The above expressions shows that if io  were equal to unity then every electron injected into the laser 

per second above the threshold injection rate of qIth  would end up producing a photon in the laser 
output. Above threshold, the laser is therefore a very efficient converter of electrical energy into optical 
energy. This property of the laser is commonly expressed in terms of the differential slope efficiency 

dS , 
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or the differential quantum efficiency dQ , 
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11.5.7 A Worked Example:  
Consider an InGaAsP/InP laser (shown in the Figure below) with the following parameter values: 
 

 
Laser length = L = 500 m 

(LEFT) Output facet of a 5 QW InGaAsP/InP laser for 1.55 m operation. (RIGHT) Measured LI 
characteristics of the laser. 
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Active region width = W = 1.5 m 
Active region height (all 5 quantum wells) =  h = 0.035 m = 35 nm 

Facet reflectivities =  R1 = R2 = 0.3 

Transparency carrier density = ntr = 1.75x1018 1/cm3 

Active region mode confinement factor (for all 5 quantum wells) = a = 0.07 

Waveguide group velocity = vg = c/3.4 
Waveguide modal loss = ~  =  15 1/cm 
A = 0 
B = 10-9 cm3/s 
C = 5x10-29 cm6/s 

og~ =1500 1/cm 

Current injection efficiency = i  = 0.85 
 
Using the above parameters we can calculate the remaining laser parameters as follows. The effective 
mirror loss is, 
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The output coupling efficiency is, 
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The photon lifetime in the cavity is, 
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The threshold gain is, 
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we can calculate the threshold carrier density, 
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From the threshold carrier density we can obtain the threshold current, 
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The calculated threshold current value compares favorably with the  observed value in the Figure above.  
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11.6 Laser Stability and Relaxation Oscillations 
 
11.6.1 Introduction: 
Suppose a laser is biased with current I  above threshold. The steady state values of carrier and photon 
densities are n  and pn , respectively. Since thII  , thnn  . Suppose at time 0t , the carrier density is 

suddenly increased from n  to nn  . The new value of the carrier density is not the steady state value 
and we would like to see how, if at all, the steady state value is recovered. The carrier density nn   is 
greater than thn , and, consequently, the gain g~  is greater than the threshold gain thg~ . In steady state, g~  

can never be greater than thg~ , but this restriction does not hold in non-steady state situations. 

Alternatively, we could have perturbed the photon density at time 0t  to pp nn  . If the carrier or 

photon densities in a laser are disturbed (by some means) from their steady state values then it is 
important to know if these quantities return to their steady state values. If they do, the laser is stable. If 
they don’t, the laser is unstable. Studying the recovery dynamics associated with such carrier density or 
photon density perturbations tell a lot about the underlying laser physics.   
 
We start from the laser rate equations, 
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and make the substitutions, 
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The laser rate equations contain many nonlinear terms and we will linearize each of these terms around 
their steady state values and keep terms to only first order in the perturbed quantities,  tn  and  tnp . 

This procedure yields, 
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We have introduced two new quantities in the above equations; the differential stimulated emission time 

st  and the differential recombination time r , defined as follows, 
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The laser rate equations result in the following linear coupled differential equations for the perturbations, 

 
 
 

 
 



















































tn

tn
II

tn

tn

dt

d

p

st

a

pastr

p 0

1



  

We have ignored the perturbation in the spontaneous emission term in the laser rate equations since it is 
much smaller than the perturbation in the stimulated emission term.  
 
11.6.2 Relaxation Oscillations:  
The coupled differential equations for the perturbations in the carrier and photons densities constitute a 
second order linear system much like the equations for the current and the voltage in a LCR circuit. The 
coupled equations give the following identical second order differential equations for the perturbations, 
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where the relaxation oscillation frequency R  and the damping constant   are defined as, 
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The solutions of the above second order equations have the form, 
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The constants A, B, C, and D can be chosen to satisfy the initial conditions. Suppose,   00  tnp  

then we get, 
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The Figure below shows the time evolution of the carrier density and photon density perturbations 
vertical scale is normalized). The perturbations are damped and the steady state is stable because any 
disturbances or perturbations decay with time. The decay is not monotonic but involves damped carrier 
and photon density oscillations that are 90-degrees out of phase. These oscillations are called relaxation 
oscillations. If the second order system is critically damped or over damped (i.e., 2 R ) then the 
perturbations will decay monotonically without any relaxation oscillations.  

 
 
11.7 Direct Current Modulation of Lasers 
 
11.7.1 Introduction: 
Consider the LI (light vs. current) curve of a semiconductor laser. Suppose the laser is biased with current 
I  and the corresponding output power is P .  

 
Now suppose the current is varied such that, 
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The output power can be written as, 
   tPPtP   

This current modulation is used in optical communication systems to transfer information from the 
electrical domain to the optical domain. The question we need to answer here is how fast can a laser be 
modulated? The answer can be obtained from the laser rate equations. We assume that, 
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As in the previous Section, we linearize the laser rate equations and obtain, 
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We assume that the time varying part of the current, carrier density, the photon density, and the output 
power are sinusoidal, 
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The solution is, 
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The solution above relates the small signal carrier and photon densities to the small signal current. The 
change in the output power is, 

      fIfH
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The modulation response function  fH  is, 
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Note that since   10 fH , 

    00  fI
q
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This low frequency result could also have be obtained directly from the relation, 

 thio II
q

P 
 

 

Also note that,   00  fn . This result is to be expected since the carrier density in steady state above 

threshold does not vary with current, and remains fixed at a value close to thn .  
 
11.7.2 High Frequency Response of Lasers: 
The relation, 
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     fIfH
q

fP io 
 

 

shows that the frequency response of the laser power to current modulation is governed by the function
 fH . In optical communication systems, a detector at the receiving end converts the modulated light 

back into current. A schematic of a communication link is shown in the Figure below. Assuming the 
frequency dependent detector responsivity to be  fR , the RF current at the output of the link is related to 
the RF current at the input to the link by the relation, 
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The ratio of the RF power at the output to the RF power at the input is called the link loss and its 
expression is (assuming no optical losses in the fiber and no coupling losses), 
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The ratio is proportional to  2
fH .  

 
 

 
The Figure above plots  2

fH  as a function of frequency. The peak of  2
fH  occurs at a frequency f  

equal to approximately  2R  (provided  R ).  The peak is called the relaxation oscillation peak. 

The frequency dB3f  at which  2
fH  decreases from its value at zero frequency by 3 dB (by a factor of 2) 

is approximately equal to  221 R  (provided  R ). dB3f  is the maximum frequency at 

which the laser power can be current modulated. The relaxation oscillation frequency  2R therefore 
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sets the scale for the maximum frequency at which a laser can be current modulated. The relaxation 
oscillation frequency, given by the expression, 
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increases as the square-root of the steady state photon density. Therefore, increasing the current will 
increase the frequency dB3f . However, this trend does not continue to very high current levels. This is 
because the damping constant, given by, 
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increases linearly with the photon density (faster than the relaxation oscillation frequency). When the 
laser current is slightly larger than the threshold current,  R  because rstp  1,11  . When 

the current is increased, dB3f  also increases. As the current is increased to larger values, at some point the 

relaxation oscillation frequency R  becomes equal to 2 . When this happens, the relaxation 

oscillation peak in  2
fH  disappears and dB3f  equals pR  222  . If the current is increased 

beyond this point, the frequency dB3f  decreases instead of increasing. The maximum value of dB3f  is 
therefore related to the inverse photon lifetime in the cavity, 
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The inverse photon lifetime sets the upper limit on the modulation speed of semiconductor lasers.  
 
 

11.8 Band Diagrams and Circuit Models  
 
11.8.1 Band Diagram: 
In a laser, one must have the following condition satisfied, 
 gfhfe EqVEE    

The band diagram is shown in the Figure below.  

 
 
In the active region, the electron density n  is a function of the Electron Fermi level, the hole density p  is 
a function of the hole Fermi level and quasineutrality implies, 
    fhfe EpEn    

The above relation, together with the condition, qVEE fhfe  , uniquely determines the carrier density 
in the active region as a function of the voltage V  across the junction.  

qV 
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E
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11.8.2 Electrical Impedance of the Active Region: 
Consider a laser operating in steady state. The impedance  fZ  of the active relates the small signal 

circuit current  fI  to the small signal voltage  fV  across the junction, 

      fZfIfV   

A small change in the carrier density  fn  can be related to a small change in the voltage  fV  as 
follows, 
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The laser rate equations in Section 11.7 give, 
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The above three Equations give, 
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The impedance of the active region is proportional to the modulation response function  fH . At low 

frequencies, when   1fH , the impedance of the active region is inductive and approaches zero as the 
frequency approaches zero.   
 
11.8.3 Total Electrical Impedance: 
Consider the laser connected as shown below. The total laser impedance  fZT  consists of the active 

region impedance  fZ  in series with a resistor (representing the resistance of the top quasineutral region 
and the top contact) and also the capacitance between the top metal contact and the substrate, 
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11.8.4 Circuit Parasitics and the High Frequency Current Modulation Response: 
The current in the active region  fI  is related to the current  fIin  as, 
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The laser current modulation response is therefore more accurately given by the expression, 
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At high frequencies, the capacitance can short out the active region and the decrease the laser current 
modulation response. Careful attention must therefore be paid to circuit level parasitics when optimizing 
lasers for high speed applications.   
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11.8.5 Laser Structures for High Speed Operation 
Few laser structures for high speed operation are shown in the Figure below. 
 

 
11.8.6 Laser Packaging for Different Applications: 
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11.9 Cavity Modes and Multimode Lasing 
 
11.9.1 Cavity Modes: 
Consider the Fabry-Perot cavity, shown below.     
 

 
The mode field propagating in the forward direction can be written as, 

   zi
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If the transverse dimensions of the waveguide are chosen to be small enough, the waveguide will support 
only a single transverse mode. Suppose this mode is HE00. As discussed in earlier Chapters, for this 
transverse mode different values of the propagation vector   correspond to different longitudinal modes 
of the cavity. The spacing (in frequency) between adjacent longitudinal modes can be very small for long 
optical cavities, as we will see now. Since the cavity is closed at both ends periodic boundary conditions 
cannot be used to determine the density of modes. Suppose the complex field amplitude reflection 

coefficients at the two facets are 1r  and 2r , respectively, and  2
11 rR   and 2

22 rR  . We can write 

the reflection coefficients in terms of an amplitude and phase, 
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For any cavity mode, the change in phase in one complete cavity roundtrip must be an integral multiple of 
2 , 
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For adjacent modes we have, 
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Dividing and multiplying by   , the frequency spacing between adjacent modes, gives, 
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The reflection phases are usually weak functions of the frequency and for long cavities we have,   
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The frequency spacing between adjacent cavity modes is called the free spectral range of the cavity. It is 
more commonly expressed as wavelength spacing, 

z=0 z=L
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Lng2

2   

For example, in a 500 m long, 1.55 m Fabry-Perot laser cavity with a modal group index of 3.5, the 
wavelength spacing between adjacent cavity longitudinal modes is 0.69 nm.  
 
11.9.2 Multimode Lasing: 
Since the gain bandwidth of semiconductors is typically in the 10-50 nm range, there can be many modes 
within the gain bandwidth. This situation is depicted in the Figure below. 
 

 
 
Consider a laser cavity below threshold. As the current is increased, the carrier density increases and, 
consequently, the gain increases and at some value of the current the peak gain g~  will equal the threshold 

gain thg~  and the cavity modes near the gain peak will start to lase. If the current is increased further, the 

power in the lasing modes will increase but the carrier density will remain at the value equal to thn . 
Therefore, the gain spectrum will also remain fixed and independent of the current. The modes away from 
the gain peak will never acquire enough gain to lase no matter how much the current is increased. The 
lasing spectrum is therefore narrow but still several modes near the gain peak lase simultaneously. In a 
typical Fabry-Perot laser the number of lasing modes can be anywhere from just a few to as many as ~50. 
This multimode lasing behavior is not suitable for many laser applications, such as optical 
communications and spectroscopy. In the following Chapters we will discuss strategies to realize single 
frequency lasers.  
   
 

Cavity modes


