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Chapter 1 
 
Review of Basic Semiconductor 
Physics 
 
 
1.1 Semiconductors 
 
This review is not meant to teach you semiconductor physics–only to refresh your memory. Most 
semiconductors are formed from elements from groups II, III, VI, V, VI of the periodic table. The most 
commonly used semiconductor is silicon or Si.  In a Si crystal each Si atom forms a covalent bond with 
4 other Si atoms. Si has 4 electrons in its valence (or outer most shell) and therefore it can bond with 4 
other Si atoms. 

 
A cartoon depiction of Si  crystal is then as shown in the Figure. 

 
 

A silicon lattice (diamond lattice)
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In a Si crystal each Si atom bonds with 4 other Si atoms in a tetrahedral geometry, as shown. This 
structure is called a “diamond Lattice” (since diamond crystals consisting of C  atoms also have the same 
structure). The diamond lattice is essentially an FCC  lattice (face centered cubic) with a single-atom 
basis. The lattice constant ‘a’ is also shown in the figure. Note that ‘a’ is not the actual distance between 
the nearest Si atoms. ‘a’ is the length of one side of the diamond unit cell (not the wigner-seitz cell) that 
has the cubic symmetry. Semiconductors are also formed by combining elements from group III and 
group V of the periodic table. This is possible since group III elements have 3 electrons in their outer 
most shell and group V elements have 5 electrons in their outermost shell. So a III-V covalent bond is 
possible. Most common III-V semiconductors are GaAs  and PIn .  
 

 
Each Ga  atom is surrounded by 4 As atoms and each As  atom is surrounded by 4 Ga  atoms in a 
tetrahederal geometry. GaAs lattice is an example of “zinc blende lattice”. The difference between zinc 
blende and diamond lattices is that in diamond lattice all atoms are the same. InP  also has a zinc blende 
lattice. GaAs  and InP  are examples of “compound semiconductors”. Si, C , and Ge  are examples of 
“elemental semiconductors”. Not all compound semiconductors have the zinc blende lattice. For example, 
III-Nitrides (e.g GaN , AIN, InN ) can also have the wurtzite lattice structure show below. 
 

 

A GaAs lattice (zincblende lattice)

A GaN lattice (wurtzite lattice)
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Just like the zinc blende lattice is a FCC lattice with a single-atom basis, the wurtzite lattice is a HCP

lattice (hexagonal close packed) with a single-atom basis. For ideal HCP lattice 
3
8


a
c

. There is one 

thing common in zinc blende and wurtzite lattices; both have tetrahederal coordination.  
 
Group II elements and group VI elements also combine to give II-VI compound semiconductor like 
ZnSe, CdTe, CdSe, ZnO  etc. Most of these have zine blende or wurtzite lattices (but some do have 
“rock salt” lattic structures). Most of the IV–VI semiconductors (e.g PbS, PbSe, PbTe ) called “lead 

salts” have the “rock salt” structure (similar to a NaCl  crystal). 
 
 

1.2 Semiconductor Bandstructure 
 
In a solid the electronic energy levels are obtained by solving the Schrodinger Equation 
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where  rV  is the periodic potential from the atoms sitting on the lattice sites. The solutions of (1) can be 
written as, 
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The eigenfunctions  rkn
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,  are called Bloch functions and satisfy, 
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The vector k  can take values belonging to the first Brillouin zone (FBZ) and ''n  takes integral values. 

Therefore, all the possible energy levels of the solid can be labeled by the set of values  kn, . If one plots 

 kEn  as a function of k  for different integral values of n  one obtains the bandstructure of the solid. The 

first Brillouin zone (FBZ) corresponding to a FCC  lattice (or a diamond or a zinc blende lattice) is 
shown below. 

 

FBZ of an FCC lattice 
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The bandstructures of Si, Ge , and GaAs  are shown below.  

 
 
Only few chosen bands are shown. A particular feature of all semiconductor is that electrons in 
semiconductors fill all the low lying energy bands (called the valence bands). There are four valence 
bands, but only the highest three are shown in the figure. The highest energy in the valence bands is 
denoted by vE . In pure semiconductors the conduction bands are all empty on electrons. The lowest 

energy in the conduction bands is denoted by cE . There are also four conduction bands and all four are 

shown in the figure. The difference gvc EEE   is called the band gap of the semiconductor.  

 
Near the bottom of the lowest conduction band and the top of the highest valence band one may Taylor 

expand the energy  kEn


. Assuming isotropic parabolic bands, conduction band dispersion near the band 

bottom can be written as, 
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And for the valence band one can write, 
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where em  and hm  are electron and hole effective masses  and the vectors cK  and vK  are the locations 

in k-space of conduction band minimum and valence band maximum. 0vK  for all semiconductors that 

we will consider. 0cK  for most III-V and II-VI semiconductors. Semiconductors for which vc KK   

are called “direct gap” or just “direct (e.g. GaAs , InP , GaN , ZnSe , CdSe , ZnO ). Semiconductors 

for which vc KK   are called “indirect gap” or just “indirect” (e.g. Si, Ge , C , SiC , GaP , AlAs ). 
As we will see later in the course, all optically active semiconductors are direct gap.  
 

When 0 vc KK , and assuming isotropic parabolic bands, 
 

Conduction band:  
e

cc m

k
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Silicon bandstructureGermanium bandstructure GaAs bandstructure
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Valence band:  
h

vv m

k
EkE
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More generally, one can write for the conductions band with minimum at cK  (assuming parabolic 
bands), 

     ceccc KkMKkEkE  1
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where eM  is the effective mass matrix, 
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Physical considerations demand that eM  be symmetric. Similarly, for the valence band one get, 
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1.3 Counting Electronic States in Semiconductors 
 

In a solid of volume V , the number of energy levels is one band in volume kd 3  of the FBZ is 
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where values of k  are restricted to the FBZ can be replaced by the integral, 
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The number of energy levels per band in a crystal of volume V is given by, 
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The number of energy levels per band in a crystal of volume V is then given by, 

 crystal the in cells primitive of number 2
cell primitive the of volume

2 
V

 

 
Therefore each primitive cell contributes two states or energy levels to each band.  
 
 

1.4 Linear Combination of Atomic Orbitals Approach to Energy Bands 
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Linear combination of atomic orbitals is another way to understand energy band formation in 
semiconductors. In semiconductors, the atomic states of the outermost shell (e.g the single 3s  and the 
three 3p  in a Si atom, and the single 4s  and the three 4p  in a Ga  atom and the same in a As atom) 
combine or hybridize with the states of the neighboring atoms to result in the four valence bands and the 
four conditions bands, as shown in the figure below.  
 

 
In this hybridization process the total number of energy levels of all the atoms is conserved. Suppose N  
Si atoms from a crystal then the total number of energy levels before hybridization is N42  . Now lets 
find the total number of energy levels in the resulting crystal. As found earlier, the number of energy 
levels per band in a crystal of volume V is then given by, 

 crystal the in cells primitive of number 2
cell primitive the of volume

2 
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So the total number of energy levels in eight bands (four conduction bands and four valence bands) is, 
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Since each Si primitive cell has two Si atoms (diamond lattice is an FCC lattice with a two-atom basis) 
we get,  
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And we get the same answer as before.  
 
 

1.5 Properties of Semiconductor Alloys 
 
Other than elemental and compound semiconductors, semiconductor alloys also exist and are extremely 
useful. For example xx GeSi -1  is a binary allows of Si and Ge  and the lattice of xx GeSi -1  consists of 

x  fraction of Ge  atoms and  x-1  fraction of Si atoms arranged randomly. On the other hand SiC  is a 
compound semiconductor with zinc blende Lattice. 
  
Binary Alloys:   

GeSi -1 x  Alloy of two elemental semiconductors consists of x  fraction of Ge  atoms and  x-1  

fraction of Si atoms 
 
Ternary Alloys:  

Energy band formation in a crystal of N Silicon atoms

3N x 3p 

N x 3s 

4 conduction 
bands 

4 valence 
bands 

Eg 
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AsGaAl -1 xx    Alloy of two compound semiconductors AlAs and GaAs  with x  fraction of AlAs  

and )(1 x  fraction of GaAs , also written as:  GaAs1AlAs xx   

AsGain -1 xx    Alloy of two compound semiconductors inAs and GaAs  with x  fraction of inAs and 

)(1 x  fraction of GaAs  also written as:  GaAs1inAs xx   
 
 
Quaternary Alloys: 

       GaAsGaP1InP11InAs1PAsGaIn -1-1 xyyxyxyxyyxx 
 

 
Here we will discuss what happens when we make an alloy of two semiconductors (whether elemental or 
compound) and how do the properties of the alloy differ from those of its constituents. 
 
1.5.1 Vegards law:  
Vegard’s law says the lattice constant of an alloy is a weighted sum of the lattice constants of each of its 
constituents, and the weight aligned to each constituent is equal to its fraction is the alloy. 
 
Example: For binary alloys like x1xGeSi  

       Ge  1Si GeSi 1 axaxa xx   
 
Example: For a ternary alloy like AsGaAl 1 xx    

       GaAs1AlAs AsGaAl 1 axaxa xx   
 
Example: For a quaternary alloy like yyxx P  11 AsGaIn  

          
     GaAs GaP1

In11InAs 1AsGaIn 11

axyayx

PayxaYxPa yyxx



  

What about other material parameter like dielectric constants, effective masses, band gaps, etc? The linear 
rule rays that you average all quantities just like the lattice constant is averaged according to the Vegards 
law. If you don’t know any better, the linear rule law can be a good first approximation. But it does not 
always work very well for quantities other than the lattice constant. For example, the band gap of 

AsGaAl 1 xx   at the  point is given more accurately by: 

   2
xxg xcbxaE  AsGaAl 1    

where,  
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The values of ca,b,  are determined experimentally. Similarly, for AsInGa 1 xx   one has, 

    2
1 AsIn Ga cxbxaE xxg    

where  
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In designing alloys one has to be careful. GaAs  is a direct gap semiconductor (conduction band 
minimum and valence band maximum occur at the   point). AlAs is as indirect gap semiconductor 
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(conduction band minimum is at the X  point and valence band maximum is at the   point). The Alloy 
AsGaAl 1 xx   must therefore be direct gap for small values of x and indirect gap for large values of x. At 

some value of x the transition from direct to indirect gap occurs. This is shown in the Figure. For the 
effective masses, the linear rule works better if the inverse effective masses are averaged, and provided 
the effective masses refer to the same point in k-space in the FBZ. For Eeample, the electron effective 
mass em  in AsInGa -1 xx  is, 

     InAs

1

GaAsAsInGa

1

-1 eexxe m

x

m

x

m


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Here, all effective masses are at the   point in the conduction band. For the dielectric constants, and 
refractive indices, the linear rule can be hopelessly wrong, especially if the wavelength at which these are 
desired is close to the bandgap of any one of the constituents in the alloy. As the course proceeds we will 
consider many different examples. 

 
1.6 Density of States in Energy 

We know that the number of allowed energy states in volume kd


3  of the reciprocal space is 
 3

3

2
2



kd
V  

in one energy band. Suppose we want to find out the number of allowed energy states in an interval dE  
of energy in a band. Suppose a simple isotropic, parabolic conduction band with energy dispersion given 
by,  

   kkk
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The equal energy surfaces in reciprocal space or k-space are spherical shells (i.e. all states on a shell have 

the same energy since the  kE  vs k  relation is isotropic). Suppose the thickness of the shell is dk . Then 
the number of states in the shell of radius k  is, 
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A spherical shell of thickness dk  in k-space corresponds to interval dE  in energy space. The number of 
states in the shell is, 
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The number of states in energy interval dE  is therefore,  
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where  Egc  is called the conduction band density of states and represents the number of states per unit 
energy interval in the band per unit crystal volume. 
 
For conduction band:  
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For valence band:  
Similarly, for valence band with an isotropic parabolic effective hole mass hm ,  
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Now consider a more complicated example of a non-isotropic but parabolic conductions band with 
dispersion given by, 
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Now how do we find  Egc ? Equal energy surfaces are now elliptical shells. Define,  
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Equal energy surfaces in q-space are now spherical shells. We have simply scaled the coordinates. 

Volume element 
3

3

)2( 

qd


is q-space corresponds to volume element 
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mmm
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Number of states in volume kd3  in k-space is, 

  
   3

3

233

3

2
2

2
2



qd

m

mmm
V

kd
V

zyx
  

Number of states in volume qd3  in q-space is, 
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Number of states in spherical shell of radius q  in q-space is,  
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Therefore, the density of states is, 
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where the density of states effective mass dem  for electrons is  
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We can write the conduction band density of states as follows, 
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1.7 Occupation Statistics 
 
1.7.1 The Fermi-Dirac Distribution Function: 
The probability of an electron occupying a state of energy E  in the crystal is given by the Fermi-Dirac 
distribution function, 

    KTEE fe
Ef
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where fE  is the Fermi level (or the chemical potential) and K is the Boltzmann constant.  
 
Example:  
Consider isotropic parabolic conduction band with the dispersion, 
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At zero temperature all the valence bands are occupied by electrons and all the conduction bands are 
empty. At any non-zero temperature electrons can be thermally excited from the valence band into the 
conduction band. We need to find the electron density at a non-zero temperature. The electron density can 
be written as,  

 
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When the Fermi level fE  is much below the conduction band edge, i.e. KTEE fc  , then the Fermi 
distribution function can be approximated by an exponential, 
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This approximation, called the Maxwell-Boltzmann approximation, does not always work. It only works 
when the electron density is very small. With this approximation we get,  
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is called the effective density of states of the conduction band. More generally (when kTEE fc   is 
not true) and the band is not isotropic (but is still parabolic), 
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where  xF 21  is called the Fermi function and is defined as,, 

  





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










0

21   for   
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e

y
xF x
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
 

 
Example: We can also find the hole density in a semiconductor at non-zero temperature. The probability 
of a hole at energy E  is given by  Ef1 . Consider a parabolic and isotropic valence band given with 
energy dispersion given by,  

 
h

v m

k
EkE

2

22
  



Semiconductor Optoelectronics (Farhan Rana, Cornell University) 
 

The hole density in the valence band is, 

  
 
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For KTEE vf  , when Maxwell-Boltzmann approximation works, 
  KTEE

v
fveNp   

For parabolic but not isotropic valence band vN is given by, 

2

3

22
2 




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






KTm
N dh

v  

 where dhm  is the density of states effective mass for holes.  

 
1.7.2 Intrinsic Semiconductors: 
Semiconductors are either doped ( n -type or p -type) or they are undoped (intrinsic). In intrinsic 

semiconductors the number of electrons and holes must be equal (i.e. pn  ). Assume Maxwell-
Boltzmann approximation. 
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EE

v
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fvcf
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If cv NN ~  then fE  is in the center of the band gap and therefore Maxwell-Boltzmann approximation 
works. Also, 

KT

E
eNN

KT

EE
eNNnp

g
vc

vc
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
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
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)(
 

Since, 

i
KT

E

vc neNNpnpn

g





2  

The intrinsic electron and hole concentration is therefore related to the semiconductor bandgap.  
 
1.7.3 Doped semiconductors: 
Semiconductors can be doped n-type or p-type by introducing donor or acceptor impurities, respectively. 
Each donor atom contributes an energy state with energy dE right below the conduction band minimum, 
as shown in the Figure. The electron in the donor atom can get enough thermal energy (at room 
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temperature) to get into the conduction band and move away leaving behind a positively charged ionized 
donor atom. Each donor atom can get ionized with a probability given by, 

  KTEE
d

dfeg   1

1
  

where 2dg . If the donor concentration is dN , then the ionized donor concentration is, 

   KTEE
d

d
d dfeg

N
N







1
 

 
 
Similarly, an acceptor impurity atom contributes an energy state with energy aE right below the valence 
band maximum, as shown in the Figure. And electron in the valence band can get enough thermal energy 
(at room temperature) to move up from the valence band into the acceptor energy level thereby negatively 
charging the acceptor impurity atom and leaving behind a hole in the valence band. Conversely, one can 
say that at room temperature the hole in the acceptor energy level can move down into the valence band 
and move away leaving behind a negatively charged ionized acceptor atom. Each donor impurity can get 
ionized with a probability given by, 

  KTEE
a

faeg 1

1
 

Where aE  is the acceptor binding energy and 2ag . The ionized acceptor concentration is then, 

  KTEE
a

a
a

faeg

N
N







1
  

Each ionized donor (acceptor) atom is singly positively (negatively) charged. Overall change neutrality 
implies, 

  0 
ad NNnpq  

If Maxwell-Boltzmann statistics apply then,  
2
innp   

Eg 
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E
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The solution is, 
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N-type Semiconductor: 
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In a n-type semiconductors since,  
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Therefore, fE  shifts close to the conductions band in an n-type semiconductor. 
 
P-type Semiconductor: 
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In a p-type semiconductors since, 
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Therefore, fE  shifts close to the valence band in a p-type semiconductor. 
 
1.7.4 Degenerate Doping: 
When doping dN  (or aN ) is much larger than cN (or vN ) the Maxwell-Boltzmann approximation does 
not work. In this case electron (or hole) density is found by solving the non-linear equations for the Fermi 
level, 
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and then computing n (or p ).  
 
 
 
 

1.8 Electron and Hole Transport in Semiconductors 
 
1.8.1 Electron and Hole Current Densities: 
Electron current density eJ


 (units: Amps/cm2) has drift and diffusive components, 

       rnDqrErqnrJ eee


   

The electron mobility is e (units: cm2/volt-sec) and the electron diffusion constant is eD (units: 
cm2/sec). When Maxwell-Boltzmann approximation applies, the mobility can be related to the diffusion 
constant by the Einstein relation, 

KT

q

De

e 


 

Similarly, the hole current density is, 

       rpDqrErpqrJ hhh


   
And the corresponding Einstein relation is, 

KT

q

D

u

h

h   

 
1.8.2 Particle Number Conservation Equations: 
Since electron number in the conduction band is conserved (unless electrons recombines with a hole) we 
have: 

       rRrGrJ
qt

rn
eee





 1
 

For holes we have, 
       rRrGrJ

qt

rp
hhn





 1
 

For electron-hole generation or recombination, 
   rGrG eh


  

and, 
   rRrR eh


  

 
 
1.8.3 Poisson Equation: 
The electric field inside a semiconductor is given by the Poisson equation, 

            rNrNrnrpqrEx ad
     

 
1.8.4 Five Shockley Equations: 
The following five equation, named after William Shockley, form the backbone of basic semiconductor 
device analysis,  
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When solved with proper boundary conditions, these equations determine the electron-hole dynamics in 
most semiconductor devices. 
 
1.8.5 Electron-Hole Recombination-Generation and Minority Carrier Lifetimes: 
There are different mechanisms by which electrons and holes recombine. We will go into the details later 
in the course. Here we give a simple qualitative expression for the case of minority carriers. In a p-type 
semiconductor, electrons are the minority carriers and holes are the majority carriers and pn  . In a n-

type semiconductor, holes are the minority carriers and electrons are the majority carriers, and np  . In 
equilibrium, generation and recombination rates are always equal. They differ only in non-equilibrium 
situations. We consider a non-equilibrium situation in a p-type semiconductor in which the electron and 
hole concentrations are slightly perturbed from their equilibrium values given by on  and op , 

respectively ( oio pnn 2 ). In this case, one can write the net recombination rate as, 

e

o
ee

nn
GR




  

where e  is the minority carrier (i.e. electron) lifetime.  In equilibrium, onn  , and ee GR  , as it must 
be. If holes are the minority carriers, then one can write, 

h

o
hh

pp
GR




  

In equilibrium opp   and hh GR  . In intrinsic semiconductors the expressions for recombination-
generation are more complicated and we will examine them later in the course.  
 
1.8.6 Bands and Band Diagrams in Real Space: 
Recall that the total energy of an electron in a crystal is a sum of kinetic and potential energies, and this 

total energy  P.EK.E   is what is plotted in  kE


 vs k


 band diagrams. Now suppose an electric field is 

present inside a semiconductor. The electrostatic potential  r


  associated with an electric field  rE


 
satisfies 

   rrE


  

In the presence of an electric field the potential energy of the electrons gets an additional term  rq


 . 
This addition shifts the energies of all the bands in real space as a function of position. In particular, the 
conduction band minimum cE  in real space is given by the equation 

        oocc rrqrErE


   
and similarly. 
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Band diagrams (in real space) are plots of the lowest conduction band energy cE , highest valence band 

energy vE , and the Fermi level fE  in real space. Some examples are shown below. 
 
N-type Semiconductor without E-Field: 

 
 
P-type Semiconductor without E-Field: 

 
Intrinsic Semiconductor without E-Field: 

 
 
 
N-Type Semiconductor with E-Field in the  positive x-direction: 
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Note that since    rErE cf


  is independent of position, electron density is uniform. Hole density is also 
uniform (why?). The situation depicted in the figure would result if we take a n-type semiconductor, put 
metal contacts on its two ends, and apply a voltage from the external circuit, as shown below.  
 

 
Let us find the current using Schockley’s equations, 
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where, 

 hehe qpqn
A

L
R 


  

No surprise here; the n-doped semiconductor acts like a conductor with conductivity that is the sum of the 
electron and hole conductivities.  
 
1.8.7 Fermi-level in Equilibrium: 
In equilibrium, the Fermi level, being the chemical potential, must have the same value at all locations in 
the device, i.e. the Fermi level is a straight horizontal line in the band diagram in equilibrium. Fermi level 
can change with position only in non-equilibrium situations.  
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