Semiconductor Optoelectronics (Farhan Rana, Cornell University)

Chapter 1

Review of Basic Semiconductor
Physics

1.1 Semiconductors

This review is not meant to teach you semiconductor physics—only to refresh your memory. Most
semiconductors are formed from elements from groups 11, III, VI, V, VI of the periodic table. The most
commonly used semiconductor is silicon or Si. In a Si crystal each Si atom forms a covalent bond with
4 other Si atoms. Si has 4 electrons in its valence (or outer most shell) and therefore it can bond with 4

other Si atoms.
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A cartoon depiction of Si crystal is then as shown in the Figure.

A silicon lattice (diamond lattice)
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In a Si crystal each Si atom bonds with 4 other Si atoms in a tetrahedral geometry, as shown. This
structure is called a “diamond Lattice” (since diamond crystals consisting of C atoms also have the same
structure). The diamond lattice is essentially an FCC lattice (face centered cubic) with a single-atom
basis. The lattice constant ‘@’ is also shown in the figure. Note that ‘@’ is not the actual distance between
the nearest Si atoms. ‘@’ is the length of one side of the diamond unit cell (not the wigner-seitz cell) that
has the cubic symmetry. Semiconductors are also formed by combining elements from group III and
group V of the periodic table. This is possible since group III elements have 3 electrons in their outer
most shell and group V elements have 5 electrons in their outermost shell. So a III-V covalent bond is
possible. Most common III-V semiconductors are GaAs and InP .

A GaAs lattice (zincblende lattice)

Each Ga atom is surrounded by 4 As atoms and each As atom is surrounded by 4 Ga atoms in a
tetrahederal geometry. GaAs lattice is an example of “zinc blende lattice”. The difference between zinc
blende and diamond lattices is that in diamond lattice all atoms are the same. InP also has a zinc blende
lattice. GaAs and InP are examples of “compound semiconductors”. Si, C, and Ge are examples of
“elemental semiconductors”. Not all compound semiconductors have the zinc blende lattice. For example,
I1I-Nitrides (e.g GaN, AIN,InN) can also have the wurtzite lattice structure show below.

A GaN lattice (wurtzite lattice)




Semiconductor Optoelectronics (Farhan Rana, Cornell University)

Just like the zinc blende lattice is a FCC lattice with a single-atom basis, the wurtzite lattice is a HCP

lattice (hexagonal close packed) with a single-atom basis. For ideal HCP lattice gz \/g . There is one

thing common in zinc blende and wurtzite lattices; both have tetrahederal coordination.

Group II elements and group VI elements also combine to give II-VI compound semiconductor like
ZnSe, CdTe, CdSe, ZnO etc. Most of these have zine blende or wurtzite lattices (but some do have

“rock salt” lattic structures). Most of the IV-VI semiconductors (e.g PbS, PbSe, PbTe ) called “lead
salts” have the “rock salt” structure (similar to a NaCl crystal).

1.2 Semiconductor Bandstructure

In a solid the electronic energy levels are obtained by solving the Schrodinger Equation
2
- _2 - - -
—V e+ Vir r)j=Ewylr 1
{ Y. ( )} w(F)=E () (1)

where V(I’ ) is the periodic potential from the atoms sitting on the lattice sites. The solutions of (1) can be
written as,

y/(r) =Y.k (;) = eiE’;un,E (;)

The eigenfunctions Yk (;) are called Bloch functions and satisfy,
2 (- (- (— —
[% , v(r)},,nj £)= £, 2 6)

The vector k can take values belonging to the first Brillouin zone (FBZ) and 'n' takes integral values.

Therefore, all the possible energy levels of the solid can be labeled by the set of values 1,k (. If one plots

E, (E) as a function of k for different integral values of n one obtains the bandstructure of the solid. The

first Brillouin zone (FBZ) corresponding to a FCC lattice (or a diamond or a zinc blende lattice) is
shown below.

FBZ of an FCC lattice
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The bandstructures of Si, Ge, and GaAs are shown below.
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Germanium bandstructure Silicon bandstructure GaAs bandstructure

Only few chosen bands are shown. A particular feature of all semiconductor is that electrons in
semiconductors fill all the low lying energy bands (called the valence bands). There are four valence
bands, but only the highest three are shown in the figure. The highest energy in the valence bands is
denoted by E, . In pure semiconductors the conduction bands are all empty on electrons. The lowest

energy in the conduction bands is denoted by E.. There are also four conduction bands and all four are

shown in the figure. The difference E; —E,, = Eg is called the band gap of the semiconductor.

Near the bottom of the lowest conduction band and the top of the highest valence band one may Taylor
expand the energy E,, (k ) Assuming isotropic parabolic bands, conduction band dispersion near the band

bottom can be written as,
= 72

E (k)z E. +
c Cc 2m

(k-Ko)-k-Ke)
e
And for the valence band one can write,

E [k)-E, —%(E—Rv)-(i%—?(v)

where Mg and my, are electron and hole effective masses and the vectors K¢ and Ky are the locations
in k-space of conduction band minimum and valence band maximum. Ky =0 for all semiconductors that

we will consider. Rc =0 for most III-V and II-VI semiconductors. Semiconductors for which Rc = Rv
are called “direct gap” or just “direct (e.g. GaAs, InP, GaN, ZnSe, CdSe, ZnO). Semiconductors
for which K¢ # Ky are called “indirect gap” or just “indirect” (e.g. Si, Ge, C, SiC, GaP, AlAs).
As we will see later in the course, all optically active semiconductors are direct gap.

When Rc =Ky =0 , and assuming isotropic parabolic bands,

h2k?
2mg

Conduction band: E, (E) =E. +
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2,2
Valence band: Ev(k) E, —Z—k
Mpy

More generally, one can write for the conductions band with minimum at K¢ (assuming parabolic
bands),

—

Ek)-E, +§(k Ke)Ms" (k- Ke)
where M, is the effective mass matrix,
Myy Myy My
Me =\my, my,, my,
Mgy Mz, Mgy

Physical considerations demand that M, be symmetric. Similarly, for the valence band one get,

E (Zé) E, —%(k Ko) M,;1-(E—RV)

1.3 Counting Electronic States in Semiconductors

In a solid of volume V, the number of energy levels is one band in volume d3k of the FBZ is

K
2xV d”k (The multiplies 2 accounts for the two spin states). So all summations of the from > ---
27)° keFBZ
where values of k are restricted to the FBZ can be replaced by the integral,
d’k
SV
K FBz (27)

The number of energy levels per band in a crystal of volume V is given by,

3
2 Yy =2V | i’k _ 2V x volume of FBZ

keFBz  FBZ(22)° (22)°

But,
(27)°
volume of the primitive unit cell

The number of energy levels per band in a crystal of volume V is then given by,
%4

volume of the primitive cell

volume of FBZ =

= 2 {number of primitive cells in the crystal}

Therefore each primitive cell contributes two states or energy levels to each band.

1.4 Linear Combination of Atomic Orbitals Approach to Energy Bands
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Linear combination of atomic orbitals is another way to understand energy band formation in
semiconductors. In semiconductors, the atomic states of the outermost shell (e.g the single 3s and the
three 3p in a Si atom, and the single 4s and the three 4p in a Ga atom and the same in a AS atom)

combine or hybridize with the states of the neighboring atoms to result in the four valence bands and the
four conditions bands, as shown in the figure below.

[ .
S 4 conduction
3N x 3p eeeesssssssm = bands
?‘S Eg
[
4 valence
N
N x 3s sesssssssssms bands
N

Energy band formation in a crystal of N Silicon atoms

In this hybridization process the total number of energy levels of all the atoms is conserved. Suppose N
Si atoms from a crystal then the total number of energy levels before hybridization is 2 x 4N . Now lets
find the total number of energy levels in the resulting crystal. As found earlier, the number of energy
levels per band in a crystal of volume V is then given by,
74
volume of the primitive cell
So the total number of energy levels in eight bands (four conduction bands and four valence bands) is,

# of primitive cells # of
X X
in the crystal bands
Since each Si primitive cell has two Si atoms (diamond lattice is an FCC lattice with a two-atom basis)
we get,

oy #ofprlmltlvecells y # of =2xﬂx8=4N
inthe crystal bands 2

And we get the same answer as before.

= 2 {number of primitive cellsin the crystal}

1.5 Properties of Semiconductor Alloys

Other than elemental and compound semiconductors, semiconductor alloys also exist and are extremely
useful. For example Siy., Ge, is a binary allows of Si and Ge and the lattice of Siy_, Ge, consists of

x fraction of Ge atoms and (1- x) fraction of Si atoms arranged randomly. On the other hand SiC is a
compound semiconductor with zinc blende Lattice.

Binary Alloys:
Siy.x Ge = Alloy of two elemental semiconductors consists of X fraction of Ge atoms and (1- x)
fraction of Si atoms

Ternary Alloys:
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Aly, Gay_yAs — Alloy of two compound semiconductors AlAs and GaAs with x fraction of AlAs
and (1- x) fraction of GaAs, also written as: x AlAs(1- x)GaAs

in, Gaq.yAs = Alloy of two compound semiconductors iNAs and GaAs with x fraction of inAs and
(1- x) fraction of GaAs also written as: XinAs(1— x)GaAs

Quaternary Alloys:
In1.xGayAs, Py, = (1- x)y InAs(1- x)1- y)InPx(1- y)GaP xy GaAs

Here we will discuss what happens when we make an alloy of two semiconductors (whether elemental or
compound) and how do the properties of the alloy differ from those of its constituents.

1.5.1 Vegards law:
Vegard’s law says the lattice constant of an alloy is a weighted sum of the lattice constants of each of its
constituents, and the weight aligned to each constituent is equal to its fraction is the alloy.

Example: For binary alloys like SiyGeq_y
a[Si,Gey_ ] = x a[Si]+ (1- x)a[Ge]

Example: For a ternary alloy like Al,Gaq_,As
a[Al,Gay_, As|= x a[AlAs]+ (1- x)a[GaAs]

Example: For a quaternary alloy like Iny_,GayAs,P_,
aliny_yGayAs,Py_, |=(1- x)¥ allnAs]+ (1- x)1- y)a[nP]
+ x(1 - y)a[GaP] + Xy a[GaAs]
What about other material parameter like dielectric constants, effective masses, band gaps, etc? The linear
rule rays that you average all quantities just like the lattice constant is averaged according to the Vegards
law. If you don’t know any better, the linear rule law can be a good first approximation. But it does not

always work very well for quantities other than the lattice constant. For example, the band gap of
Al,Gaq_yAs at the I" point is given more accurately by:

Ey(T)AlI,Gay_yAs]=a+bx+c x?

where,
b=1.087 eV
c =0.438 eV {at 300K}
a=142 eV

The values of a,b,C are determined experimentally. Similarly, for Ga,In4_,As one has,

Ey(T)[Gay Iny_yAs]=a+bx +ox?
where

b=0.7 eV

c=0.4 eV {at300K}

a=0.324 eV

In designing alloys one has to be careful. GaAs is a direct gap semiconductor (conduction band
minimum and valence band maximum occur at the I' point). AlAs is as indirect gap semiconductor
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(conduction band minimum is at the X point and valence band maximum is at the T" point). The Alloy
Al,Gaq_,As must therefore be direct gap for small values of x and indirect gap for large values of x. At

some value of x the transition from direct to indirect gap occurs. This is shown in the Figure. For the
effective masses, the linear rule works better if the inverse effective masses are averaged, and provided
the effective masses refer to the same point in k-space in the FBZ. For Eeample, the electron effective
mass Mg in Gaylnq_yAs is,
1 X 1-x
= +
me[Gayini As| mgy[GaAs| m,[inAs]
Here, all effective masses are at the I' point in the conduction band. For the dielectric constants, and
refractive indices, the linear rule can be hopelessly wrong, especially if the wavelength at which these are

desired is close to the bandgap of any one of the constituents in the alloy. As the course proceeds we will
consider many different examples.

Bandgaps for Al Ga, As
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1.6 Density of States in Energy

d*k
(27)°
in one energy band. Suppose we want to find out the number of allowed energy states in an interval dE
of energy in a band. Suppose a simple isotropic, parabolic conduction band with energy dispersion given

by,
. 2,2 .o
Elk)=E, + 1K {kzzk-k}
2mg
The equal energy surfaces in reciprocal space or k-space are spherical shells (i.e. all states on a shell have

We know that the number of allowed energy states in volume d 3K of the reciprocal space is 2 xV

the same energy since the E R) Vs K relation is isotropic). Suppose the thickness of the shell is dk . Then
the number of states in the shell of radius k is,

2
ZXVXMdk

(27)
Since,
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. 2,2
E (k)z E;.+ "k
2mg
h2
=>dE=—kdk
Me
A spherical shell of thickness dk in k-space corresponds to interval dE in energy space. The number of
states in the shell is,

2
2wV X 2K

(27)

v 2mg 12 m
=—2((E E)hzej hng

7[2

ﬁ(S

2jEEdE
h

The number of states in energy interval dE is therefore,

3
N2 (mg )2
—z(h—zej JE-E, dE=V g (E)E

where g, (E) is called the conduction band density of states and represents the number of states per unit
energy interval in the band per unit crystal volume.

For conduction band.:

9:(E)= f[mejzﬁ for E>E,

2 h2
0 for E<E;

For valence band:
Similarly, for valence band with an isotropic parabolic effective hole mass my,,

9v(E)= g(

':gj E,—E for E<E,
0 for E>E,
Now consider a more complicated example of a non-isotropic but parabolic conductions band with
dispersion given by,
. 2,2 p2K2 52,2
E(k)=E0+hkx+ y+hkz
2my  2m, 2m,

Now how do we find g, (E ) ? Equal energy surfaces are now elliptical shells. Define,

1 7 1
m )2 m |2 m \2
oo |- [m—J ot

~ El0)> Ela)- £, + 2 2 442 +a2)- £, +
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Equal energy surfaces in g-space are now spherical shells. We have sirnply scaled the coordinates.

d3q . 3k .
Volume element 5 is g-space corresponds to volume element 5 in k-space.
(27) mymym; (2r)

Number of states in volume d°K in k-space is,

d3k \ Mx My my d3a

2xV x—— 3= =2xV x W 3

(27) m% (2r)

Number of states in volume d 36 in g-space is,
m3/2 (27[)3
Number of states in spherical shell of radius q in g-space is,
\Mxm,m [mxmy,m . 2.2
2y WXy Mz Arg? dq_v*/_ 2 EZE,dE  Isince Elg)=E, + "1

e 22 7 2m

Therefore, the density of states is,

2 Jmym,m

3
N2(m =
) ;z_z( hozleJ =k

where the density of states effective mass My, for electrons is
1

My = (mxmymz)§
We can write the conduction band density of states as follows,

3

V2 Mye
gC(E): 7[—2 hz E- E for EZEC
0 for E<E;

1.7 Occupation Statistics

1.7.1 The Fermi-Dirac Distribution Function:
The probability of an electron occupying a state of energy E in the crystal is given by the Fermi-Dirac
distribution function,

1

Tl

where Ef is the Fermi level (or the chemical potential) and K is the Boltzmann constant.

Example:
Consider isotropic parabolic conduction band with the dispersion,

Elk)=E, + h;’?‘z

e



Semiconductor Optoelectronics (Farhan Rana, Cornell University)

At zero temperature all the valence bands are occupied by electrons and all the conduction bands are
empty. At any non-zero temperature electrons can be thermally excited from the valence band into the
conduction band. We need to find the electron density at a non-zero temperature. The electron density can
be written as,

n=2x| (‘212;‘; f(E(k)

- [dE g(E)f(E)dE

When the Fermi level Ef is much below the conduction band edge, i.e. E; — Ef >> KT , then the Fermi
distribution function can be approximated by an exponential,

1 —(E-Ef /KT
f(E):er( 4

This approximation, called the Maxwell-Boltzmann approximation, does not always work. It only works
when the electron density is very small. With this approximation we get,

3 ~(E-Ef)
n= |dE Q(m—zer,/E—EC e KT
E, h
=N, o\Er —Ec)/KT
Where,

3

NC = Z(me k;-]z
27 h

is called the effective density of states of the conduction band. More generally (when E. —Ef >>KkT is
not true) and the band is not isotropic (but is still parabolic),

o o e

Ec
3

=N, LF‘IQ[E';_ECJ Nc:2£mde kTJz
Jm KT 2m 1
where Fy5 (x) is called the Fermi function and is defined as,,

’:1/2()()205i dy {z%ex for x << —1}

1+ eV X

Example: We can also find the hole density in a semiconductor at non-zero temperature. The probability

of a hole at energy E is given by 1-f (E) Consider a parabolic and isotropic valence band given with
energy dispersion given by,

2 k2

E (k ) E,-———

2mh
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The hole density in the valence band is,

o2 2% ek

Pz_ojodE gv(E) (1-(E))

3
Ev  J2(mp)\2
= [dE ?(h—” JE, —E (1-f(E))
3
2 E, -E mpkT 2
=N Fya| =% fJ N =2( h J
v 1/2[ KT N P

For Ef — E, >> KT , when Maxwell-Boltzmann approximation works,

p ~ NV e(EV _Ef)/KT

For parabolic but not isotropic valence band N,, is given by,
3
MypKT )2
N, = 2(—0”' > j
27h
where myy, is the density of states effective mass for holes.

1.7.2 Intrinsic Semiconductors:
Semiconductors are either doped (n-type or p-type) or they are undoped (intrinsic). In intrinsic

semiconductors the number of electrons and holes must be equal (i.e. n=p). Assume Maxwell-

Boltzmann approximation.
n=p
Ef-E; E,-Ef
= N,e KT =N,e KT
Ec+Ey KT [Ny
2 2 N.

If N, ~N, then Ef is in the center of the band gap and therefore Maxwell-Boltzmann approximation

:>Ef=

works. Also,

—-(E; -Ey) _EQ

np=N.N, e =N.N, e T

Since,
_Eg
n=p=n=p=,N.N,e2KT =p;

The intrinsic electron and hole concentration is therefore related to the semiconductor bandgap.

1.7.3 Doped semiconductors:
Semiconductors can be doped n-type or p-type by introducing donor or acceptor impurities, respectively.
Each donor atom contributes an energy state with energy E right below the conduction band minimum,

as shown in the Figure. The electron in the donor atom can get enough thermal energy (at room
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temperature) to get into the conduction band and move away leaving behind a positively charged ionized
donor atom. Each donor atom can get ionized with a probability given by,

1
(Ef—Eq)/KT

1+gq4€
where g4 = 2. If the donor concentration is Ny , then the ionized donor concentration is,
Ny

+_
Nd Ef—Eq4)/KT

B 1+gde(

Eq

|
Ve
/

Similarly, an acceptor impurity atom contributes an energy state with energy E_right below the valence

>

\

band maximum, as shown in the Figure. And electron in the valence band can get enough thermal energy
(at room temperature) to move up from the valence band into the acceptor energy level thereby negatively
charging the acceptor impurity atom and leaving behind a hole in the valence band. Conversely, one can
say that at room temperature the hole in the acceptor energy level can move down into the valence band
and move away leaving behind a negatively charged ionized acceptor atom. Each donor impurity can get
ionized with a probability given by,
1
E,—Ef)/KT

1+ gae(
Where E, is the acceptor binding energy and g, ~ 2. The ionized acceptor concentration is then,
Na
E,—Ef)/KT

1+ g€
Each ionized donor (acceptor) atom is singly positively (negatively) charged. Overall change neutrality
implies,

q —n+N§—N;):0

If Maxwell-Boltzmann statistics apply then,

np = n?
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The solution is,

v; ;N;)+\/(N5 —4N;)2 e
s —N;)+\/(N§ nf

I
N-type Semiconducfor: *

p=-

+ - + 2
Ny >>Ng and N, >>n;
=n~N' and p:i«n
d +
d
In a n-type semiconductors since,

Ef—E. )/ KT

Ng
jEf—Ecsz In N_

c

Therefore, Ef shifts close to the conductions band in an n-type semiconductor.

P-type Semiconductor:
Nz >>Nj and Nz >>n
n?
=>p~N; and n=—-<<p
a
In a p-type semiconductors since,

2
i

v

B - Kﬂn{N_aj
N.
Therefore, Ef shifts close to the valence band in a p-type semiconductor.

1.7.4 Degenerate Doping:
When doping Ny (or Ng) is much larger than N, (or N, ) the Maxwell-Boltzmann approximation does
not work. In this case electron (or hole) density is found by solving the non-linear equations for the Fermi
level,
2 E-E Ny
n=N,—=—=F, (—C]:N+= (n-type)

or
N,
VI o A ) a -t
p v /_ﬂ' ;[ KT j a 1+gae(Ea_Ef)/KT (p ype)
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and then computing n (or p ).

1.8 Electron and Hole Transport in Semiconductors

1.8.1 Electron and Hole Current Densities:
Electron current density je (units: Amps/cm?) has drift and diffusive components,

je (F) = q”(F)/leE(F)Jr qDe Vn(F)
The electron mobility is g (units: cm’/volt-sec) and the electron diffusion constant is Dg (units:
cm?’/sec). When Maxwell-Boltzmann approximation applies, the mobility can be related to the diffusion
constant by the Einstein relation,

He _ 9

D, KT
Similarly, the hole current density is,

In(F)=q p(F)un E(F)~q DVp(F)
And the corresponding Einstein relation is,

Yn _ 9

D, KT

1.8.2 Particle Number Conservation Equations:
Since electron number in the conduction band is conserved (unless electrons recombines with a hole) we
have:

onlrr) 1_ =5 (- - -

M1y 3,0)=6,)-Rel)
For holes we have,

D), 5. 3,(7)= 64(7)- R

ot q

For electron-hole generation or recombination,

Gp( ) =Ge (r )
and,

Rh(F)=Rs(F)

1.8.3 Poisson Equation:
The electric field inside a semiconductor is given by the Poisson equation,

v-(EF) = alpF) - nF)+ N5 (F)- N5 7))

1.8.4 Five Shockley Equations:
The following five equation, named after William Shockley, form the backbone of basic semiconductor
device analysis,
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JolF) = ariF)eo F) + Dl
In(F)=q plF)unE(r) - DpVp(r)
)19 3,(7)- 6, F)-Rof)
B 19 3y(0)= 6nlr)- )

V- lPIEF) = alplF)-n(F)+ N (7)- N 7)
When solved with proper boundary conditions, these equations determine the electron-hole dynamics in
most semiconductor devices.

1.8.5 Electron-Hole Recombination-Generation and Minority Carrier Lifetimes:

There are different mechanisms by which electrons and holes recombine. We will go into the details later
in the course. Here we give a simple qualitative expression for the case of minority carriers. In a p-type
semiconductor, electrons are the minority carriers and holes are the majority carriers and n << p. In a n-
type semiconductor, holes are the minority carriers and electrons are the majority carriers, and p << n. In
equilibrium, generation and recombination rates are always equal. They differ only in non-equilibrium
situations. We consider a non-equilibrium situation in a p-type semiconductor in which the electron and
hole concentrations are slightly perturbed from their equilibrium values given by n, and p,,

respectively (n, = nl-2 / Po )- In this case, one can write the net recombination rate as,

n-ng,

Te
where 7, is the minority carrier (i.e. electron) lifetime. In equilibrium, n =n,, and Ry = G, as it must
be. If holes are the minority carriers, then one can write,
R, —G,=P"Po
Th
In equilibrium p =p, and Rp =Gy . In intrinsic semiconductors the expressions for recombination-
generation are more complicated and we will examine them later in the course.

1.8.6 Bands and Band Diagrams in Real Space:
Recall that the total energy of an electron in a crystal is a sum of kinetic and potential energies, and this

total energy (K.E + P.E) is what is plotted in E (E ) vs k band diagrams. Now suppose an electric field is

present inside a semiconductor. The electrostatic potential ¢(F) associated with an electric field E(F)
satisfies
E(F)=-V4(F)

In the presence of an electric field the potential energy of the electrons gets an additional term — q¢(F).
This addition shifts the energies of all the bands in real space as a function of position. In particular, the
conduction band minimum E, in real space is given by the equation

EC(F):EC(FO)_q[¢(F)_¢(FO)]
and similarly.

EF)=E, (o) - aleF)- ol |

:>E(F):

VEo(F)= VE,F)
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Band diagrams (in real space) are plots of the lowest conduction band energy E., highest valence band
energy E, , and the Fermi level Ef in real space. Some examples are shown below.

N-type Semiconductor without E-Field:

P-type Semiconductor without E-Field:

Intrinsic Semiconductor without E-Field:

N-Type Semiconductor with E-Field in the positive x-direction:

Vv X
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Note that since Ef (F ) -E; (F ) is independent of position, electron density is uniform. Hole density is also

uniform (why?). The situation depicted in the figure would result if we take a n-type semiconductor, put
metal contacts on its two ends, and apply a voltage from the external circuit, as shown below.

'
Area=A >
\ N-semiconductor
I'A

+

(V)
\J

Let us find the current using Schockley’s equations,

on
Jo =qnu, E+qD, —
e = qNug Qeax

0
Jn = Qpun E~qDp 2
ox
Jy=Jdg +J,
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= Jy =(gnue + E
t (q He qpuh) {p(x) = constant = P}

= JiL = (qnue + qpun JEL = (qnue + qpun V
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:>I=K
R

where,
L
R=——- {O':qnﬂe+qpﬂhzo'e+o'h
Ao

No surprise here; the n-doped semiconductor acts like a conductor with conductivity that is the sum of the
electron and hole conductivities.

1.8.7 Fermi-level in Equilibrium:

In equilibrium, the Fermi level, being the chemical potential, must have the same value at all locations in
the device, i.e. the Fermi level is a straight horizontal line in the band diagram in equilibrium. Fermi level
can change with position only in non-equilibrium situations.



