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 Department of Electrical and Computer Engineering, Cornell University 
 

ECE 5310: Quantum Optics for Photonics and Optoelectronics 
 

Fall 2013 
 

Homework 8       Due on Nov. 05, 2013 (self-grade) 
 
 

 
Problem 8.1 (Propagating squeezed states of light) 
In this problem you will look at propagating squeezed states. Define a squeezing operator as follows, 
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and  zr  and  z  are real functions.  
 
a) Find, 
 

 i)       SzbS ˆ0,ˆˆ   

 ii)       SzbS ˆ0,ˆˆ   
 
The displacement operator is, 
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A propagating squeezed state is written as, 

          0ˆˆ, εSTzz    

A propagating squeezed vacuum state is written as, 

    0ˆ εS  

For all the remaining parts assume,   constant  2ierz , and      constant  2 iez . Also, 

assume free fields (no interactions) and no dispersion. Suppose, at time 0t , 

             0ˆˆ,0 εSTzzt    

 
 
b) Find the state  t  at time t . 

 
c) Find the average values of the quadrature operators  tzx ,ˆ  and  tzx ,ˆ 2   at time t . You need to 

find, 
       0,ˆ0  ttzxt    and      0,ˆ0 2   ttzxt    

 
d) Find the quadrature noise correlation functions, 
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         0,,ˆ0 21  ttzxtzxt    

         0,,ˆ0 2212   ttzxtzxt    

 
e) Find the average value of the photon flux, 

       0,ˆ0  ttzFt   

 
f) Find the photon flux noise correlation function, 

         0,ˆ,ˆ0 21  ttzFtzFt   

and compare your results with the case when the quantum state is a coherent state with the same value of 

    constant  2 iez .  

 
 
Problem 8.2 (Thermal radiation and noise) 
In many cases of practical interest, one is interested in detecting and characterizing thermal radiation (e.g. 
light from arc lamps, electric bulbs, infrared imaging, night vision, satellite remote sensing etc). In this 
problem, you will look at a model for thermal radiation. Consider the figure shown below,  
 

 
 
Radiation from some thermal source at temperature T is collected and channeled into a non-interacting 
non-dispersive waveguide. An optical filter with transmission bandwidth  centered at o is placed in 
front of the waveguide. The filter only allows incoming photons that have frequencies within this 
transmission band to pass. It therefore makes sense to expand the field operator inside the waveguide in 
only this bandwidth  , as shown below,  
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NOTES ADDED:  
In a multi-mode cavity, the density operator corresponding to a thermal state is given by the factored 
form, 
   321 ˆˆˆˆ   

where the thermal density operator k̂  for the k-th mode is, 
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The following relations follow from the form of the thermal density matrix ̂ ,  

   0ˆˆˆ  kk aa Tr      and       0ˆˆˆ  
kk aa Tr  

 
1exp

ˆˆ











TK

naa

B

k

kq
kthkqqk 





            and            1ˆˆ 

kthkqkq naa   

So the averages are uncorrelated among different modes.  
 

What about more complex averages? For example, 
kqsr aaaa ˆˆˆˆ . These can be evaluated by using the 

following easy-to-remember rules which work for the thermal density operator ̂  (this does not mean that 
these rules will work for any other density operator):  
 

i) If the total number of creation and destruction operators is odd the result is zero.  
ii) If the total number of creation operators is not equal to the total number of destruction 

operators, the result is zero.  
iii) If (i) and (ii) are satisfied, then the result is the sum of products of all possible pairings of the 

creation and destruction operators without disturbing the order of the operators, as shown 
below. The two possible pairings schemes are shown graphically with solid lines at the top 
and bottom.  

 
 

                   qskrkqsrkqsr aaaaaaaaaaaa ˆˆˆˆˆˆˆˆˆˆˆˆ   

 
 
You are going to use the ideas presented above for the waveguide modes. Since the photons traveling in 
the waveguide in the rightward direction are coming from the thermal source, their state is described by a 
thermal density operator. Generalizing from what we saw for the case of the cavity, we can write the 
following expressions for the operator averages, 

   0ˆ a      and       0ˆ  a  
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a) Calculate the average photon flux in the waveguide,  0,ˆ zF . The average is with respect to a 

statistical mixture corresponding to a thermal state for each mode.   
 
Hint: You can also assume that    is not a strong function of the wavevector  , and so every 

occurrence of the thermal occupation number   thn  can be replaced by its value  othn   at the 

center of the observation bandwidth. Your answer should be:    othnzF 



2
0,ˆ 

 .  

 
INTERPRETATION:  
The number of rightward propagating modes in the waveguide of length L  in a wavevector bandwidth 

  is equal to 
gv

LL 
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. Each mode has an average photon occupation equal to  othn  . So 

the number of photons per unit length is  oth
g

n
v
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1
. Photons move at the group velocity gv . So 

the average photon flux at any point in the waveguide in a frequency bandwidth   is equal to, 
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b) Calculate the photon flux correlation function,    21 ,ˆ,ˆ tzFtzF .  

 
Hint: Your answer should be, 
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c) Using your results from parts (a) and (b), calculate the flux noise correlation function,  

     21 ,ˆ,ˆ tzFtzF   

and also the flux noise spectral density  FFS  . You may make the following approximation,  
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d) Argue that when   1othn  , the photon flux has shot noise.  
 
NOTE ADDED: For visible and near infrared frequencies ( < 5 m)   1othn   (unless the 
temperature of the thermal source is more than few thousand degrees), and the photon flux has shot noise. 
However, when   1othn  , the flux noise is more than shot noise.  
 
 
Problem 8.3 (Beam splitters and transformation of quantum states of light under 
optical loss) 
In this problem you will see how photon number states transform under photon loss. Consider a 50-50 
beam splitter as described in the lecture notes,  

 
for which the input-output relation are given at all times by,  

 
 
 

 
 















 














tzb

tzb

tzb

tzb

o

o

o

o

,ˆ
,ˆ

11

11

2

1

,ˆ
,ˆ

2

1

4

3  

 
and the inverse relation is, 
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Part I: For parts (a) through (c) the incoming photon packet state on channel 1 is described at time 0t
by the expression, 
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a) What is the state  t  for time sufficiently large that the packet has for sure gone through the beam 

splitter? You will see that the photons states in the output channels are entangled.  
 
b) If a photodetector is inserted in the output channel 3, what is the probability )(mP  that it will detect 

“m” photons?  

 

 

 

 

  

 

 

Detector D 
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Hint: The probability for detecting a certain number of photons follows a binomial distribution.  
 
c) What is the average number of photons that will be detected by a photodetector placed in the output 
channel 3. Does your result confirm to your intuitive expectation?  
 
d) Quantum state collapse: For this part assume that the detector is taken from channel 3 and placed in 
channel 4. If at time t  the detector placed in channel 4 detected (or measured) “p” photons, what is the 
quantum state of all the channels immediately after this detection? NOTE: You can assume that the state 
describing channel 4 immediately after the measurement is the vacuum state 

4
0 , since photodetection, 

during the detection (or counting) process,  usually destroys the photons that were originally in the state. 
If after the detection in channel 4, a measurement is subsequently made to count the number of photons in 
channel 3, what are the possible results and with what probabilities? Did the act of photodetection in 
channel 4 changed the photodetection results for channel 3 that you had obtained earlier in part (b). The 
reason this happens is because the photon states in the output channels are entangled.   
 
 
Problem 8.4 (Lossy optical cavities: destruction of squeezing and increased 
photon number fluctuations) 
Consider a single mode lossy optical cavity with the Hamiltonian, 

 aaH o ˆˆˆ    
The loss is due the photons escaping from the cavity into the waveguide.   
 

 
The time development equations for the Heisenberg operators  tâ  and  taˆ  are as in the lecture notes, 
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where,       ''ˆ,ˆ tttStS inin    and we define, 
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a) Find the time differential equations for the quadrature operators  tXˆ  and  tX

2

ˆ  
, where the time 

dependent quadrature operators are defined as in the lecture notes, 
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Note: the angle   is completely arbitrary.  
b) Solve the differential equations derived in part (a), and find the average values of the quadrature 
operators at time t  in terms of their average values at time 0t  for any arbitrary initial quantum state of 

the cavity. In other words, find  tXˆ  and  tX 2
ˆ    in terms of X̂  and 2

ˆ  X .  

 
NOTE ADDED: The averages denoted by the angled brackets above mean averages w.r.t. the initial state 
of the cavity as well as the initial state of the noise causing system. The initial state of the noise causing 
system is assumed to be the “vacuum” entering through the waveguide so that the following relations 
hold, 

     0ˆˆ  tStS inin              0'ˆˆ  tStS inin              ''ˆˆ tttStS inin    

     0ˆˆ    tStS inin  (the dots stand for any sequence of operators)      

      oddn for    0ˆˆˆ
21 n

c
in

b
in

a
in tStStS   (the alphabets ‘a’, ‘b’, and ‘c’ mean that the operator is an 

adjoint if the alphabet is ‘+’, or not an adjoint if the alphabet is ‘ ‘).  
 
c) Find variances of the quadraure operators at time t  in terms of their values at time 0t , i.e. find 

 tX 2ˆ  and  tX 2
2

ˆ
   in terms of 2ˆX  and 2

2
ˆ

 X .   

 
d) Conclude from your result in part (c) that if the initial state at time 0t  in the cavity were a squeezed 

state with  rX 2exp
4

1ˆ 2
1   and  rX 2exp

4

1ˆ 2
2  , then the degree of squeezing will diminish as 

photons are lost from the cavity. The degree of squeezing is the degree by which the maximum and 

minimum standard deviations of the quadrature operators differ from the coherent state value of  
4

1
. 

e)  Find the photon number operator  tn̂ , where      tatatn ˆˆˆ  , by first solving for  taˆ  and  tâ . 
You can use the results from the lecture notes directly.  
 
f) From your answer in part (e), express the average value of the photon number operator at time t  in 

terms of its average value at time 0t , find  tn̂  in terms of n̂ .  

 
g) Find the standard deviation in the photon number at time t  in terms of the standard deviation at time 

0t  and the average value at time t ,  i.e. find  tn2ˆ  in terms of 2n̂  and  tn̂ .  

 
h) Conclude from your result in part (g) that if the initial state at time 0t  in the cavity were a 
photon number state n  with no photon number fluctuations, then as time progresses the standard 

deviation in the photon number at time t , normalized to the average photon number at time t , increases 

with time and approaches unity, i.e. show that 
 

 tn

tn

ˆ

ˆ 2
 is an increasing function of time and approaches 

unity for large times.  
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i) Conclude from your result in part (g) that if the initial state at time 0t  in the cavity were a 

coherent state  , then 
 

 tn

tn

ˆ

ˆ 2
 is constant and equal to unity for all time.  

 
NOTE ADDED: Just like in the beam splitter problem, a coherent state in a cavity remains a coherent 
state when undergoing loss.   
 

j) Given that,      tatStS inout ˆ2ˆˆ  , find the average output photon flux from the cavity at time t  

if the initial state at time 0t  in the cavity were a coherent state  .  

Hint: You need to evaluate    tStS outout
ˆˆ   

 
Problem 8.5 (Optical cavities with gain) 
In this problem you will explore the noise sources for a linear optical amplifier. You have seen how 
optical gain is produced in a semi-classical treatment in an earlier problem set. Here we build a quantum 
model of a cavity with gain (as opposed to loss). We will discuss a more detailed microscopic model for 
gain in a week or two in the class. This is a warm up exercise. The amplifier considered below is an 
example of a phase insensitive amplifier since it will amplify all field quadratures in the same way.    
 
a) Suppose one writes equations for the field operators in a cavity with optical gain g as follows, 

 
 
 

 
 


























 ta

ta

g

g

ta

ta

dt

d
ˆ

ˆ

ˆ

ˆ

o

o

i0

0i-




 

Show that the equal-time commutation relation for the cavity field operators is violated because of the 

gain (i.e.      1ˆ,ˆ  tata ).  
b) If one tries to satisfy the equal-time commutation relation by introducing phenomenological noise 
sources, as shown below,  
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then show that this recipe works provided,  

       ''ˆ,ˆ tttFtF inin             (notice the strange minus sign!) 

and  
 gA 2  
Hint: Follow exactly the same steps as in the lecture notes for the case of loss.  
 


