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Department of Electrical and Computer Engineering, Cornell University 
 

ECE 5310: Quantum Optics for Photonics and Optoelectronics 
 

Fall 2013 
 

Homework 6       Due on Oct. 18, 2013 (self-grade) 
 
 

  
Problem 6.1 (Coupled photonic microcavities) 
Consider a system consisting of two identical microcavities, labeled as 1 and 2, as shown in the cartoon 
figure below. The cavities are coupled in the sense that photons initially present in one cavity can 
“tunnel” into the other cavity, and vice versa. It is the photonic version of the coupled quantum well 
problem. Each cavity supports only a single mode of the electromagnetic field of frequency o . In 
integrated micro-photonics such coupled cavities are obtained by evanescent coupling of fields between 
the cavities.  

 
The Hamiltonian describing the system is (assuming one relevant mode in each cavity), 
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where 1â  and 2â  are destruction operators for the photons in field modes  rU1


 and  rU2


that are 

localized in cavity 1 and in cavity 2, respectively. The number states of the coupled system are written as 

21
pm   which means “m” photons in the mode of cavity 1, and “p” photons in the mode of cavity 2. 

The set of all such states, for all values of “m” and “p” from zero to infinity, constitute the Hilbert space 

of the problem. The term in the Hamiltonian proportional to  1221
ˆˆ aaaaU    models the coupling 

between the two cavities. The term 12
ˆ aa  acts on a quantum state by destroying a photon in mode 1 (if at 

least one photon is present in mode 1) and creating a photon in mode 2. Thus, the action of this term is to 

transfer a photon from cavity 1 to cavity 2. Similarly, the term 21
ˆ aa  transfers a photon from cavity 2 to 

cavity 1. In this sense, the term  1221
ˆˆ aaaaU    is somewhat similar to the term 

 1221 eeeeU   in the electronic coupled quantum well problem discussed in the lecture notes. 

The big difference between electrons and photons is that while only a single electron may occupy a 
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quantum state, many photons can be in the same mode. The commutation relations among the creation 

and destruction operators can be written in compact form as   jkkj aa ˆ,ˆ .  

 
a) Suppose the initial state of the system is  

21
010 t , i.e. one photon in cavity 1 and no 

photons in cavity 2. Using the Shrodinger picture of time evolution, find the state  t  of the system at 

time t . You will need to expand  t  in terms of some suitable states, plug it into the Shrodinger 

equation, and then solve for the time dependent expansion coefficients with appropriate initial conditions. 
 
Hint: If you are prudent, you will realize that the expansion may only include the following two states and 
not all the states in the Hilbert space of the problem (this is because of photon number conservation), 
 

     
211210 1001  tctct       

 
b) Define the following Shrodinger operators, 

111 ˆˆˆ aan   

222 ˆˆˆ aan   

12
ˆˆˆ aas 

   

21
ˆˆˆ aas 

   

 
Write the Hamiltonian in terms of the operators  ssnn ˆ,ˆ,ˆ,ˆ 21  and derive the Heisenberg equations for 

the time evolution of each of the following Heisenberg operators:        tststntn  ˆ,ˆ,ˆ,ˆ 21 .  
 
Hint: the commutation relations among the operators        tststntn  ˆ,ˆ,ˆ,ˆ 21  are rather similar to those 
obtained in the electron problem discussed in the lecture notes.   
 
c) Solve the Heisenberg equations derived in part (b) with appropriate initial conditions, and obtain the 
operators  tn1ˆ  and  tn2ˆ  as a function of time.          
 
d) Now we make the problem more interesting, and you will see the differences between the photonic 
coupled cavity and the electronic coupled quantum well system discussed in the lecture notes. Suppose 
the initial state of the system is  

21
00  nt , i.e. “n” photons in cavity 1 and no photons in 

cavity 2. Using the Shrodinger picture of time evolution, expand the state  t  of the system at time t  

in terms of some suitable states with time dependent expansion coefficients. If you are prudent, you will 
realize that the expansion may not include all the states in the Hilbert space of the problem. Derive the 
time differential equations for the coefficients of your expansion. 
 
e) As in part (d) suppose that the initial state of the system is  

21
00  nt , i.e. “n” photons in 

cavity 1 and no photons in cavity 2. Using any method of your own choice (Shrodinger or Heisenberg) 
find the average number of photons in cavity 1 and also the average number of photons in cavity 2 as a 
function of time for 0t . Hint: one of the methods (Shrodinger or Heisenberg) will give you the result 
with orders of magnitude less work.  
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Problem 6.2 (The mystery of the coupled photonic cavities) 
Consider a system consisting of two identical and coupled cavities (as in the previous problem), 

 
The Hamiltonian describing the system is, 
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where 1â  and 2â  are destruction operators for the field modes  rU1


 and  rU2


that are localized in 

cavity 1 and in cavity 2, respectively. You solved some aspects of this problem in the previous question.  
 
Two ECE531 students, Alice and Bob, are having a debate about this problem. Alice says, “We defined 
photons earlier in the course to be the energy eigenstates of free electromagnetic fields. So how can a 
state of the form 

21
pn  , obtained by operating the vacuum state 

21
00   with creation 

operators, 
1â  and 

2â , be called a state with “n” photons in cavity 1 and “p” photons in cavity 2? 

Clearly, states like 
21

pn   are not the energy eigenstates of the Hamiltonian, and the corresponding 

field modes  rU1


 and  rU2


 that are localized in cavity 1 and cavity 2, respectively, are not the 

eigenmodes of Maxwell’s equations for the entire two-cavity system taken as a big single cavity”. To 

further make her point, Alice argues that, in principle, one can find the actual eigenmodes,  rU


 and 

 rU


, of the entire two-cavity system by solving Maxwell’s equation for the two-cavity system. Alice 

claims that if this is done, and if one defines operators d̂  and d̂  for the actual eigenmodes, then the 
Hamiltonian above could also be written simply as,  
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After a lot of hard work Alice is able to find the actual eigenmodes  rU


 and  rU


 and the 

corresponding eigenenergies,   and  , and therefore writes the Hamiltonian in the desired form 

above. Of course,   and   come out to be different from o .  
 
Bob disagrees with Alice. Alice and Bob decide that the “proof of the pudding is in the eating.” So they 
get three photodetectors. Photodetector A can detect photons only if the photon energy is o . 

Photodetector B can detect photons of energy   only, and photodetector C can detect photons of 

energy   only. Alice and Bob then stick all three photodetectors in cavity 1.  

cavity 1 cavity 2 
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a) Suppose the initial state of the system is,  
211 00ˆ0  at  (and somehow Alice and Bob are 

able to prepare this state by some means), which of the three photodetectors, if any, in your opinion will 
detect a photon? Just give an opinion if you don’t know the answer.   
 
Due to some technical problems in their photodetectors, Alice and Bob could not get convincing results 
from their experiment. You have been hired by Alice and Bob to resolve their paradox. 
 
Clearly, the states 

21
pm   are not the eigenstates of the Hamiltonian. To see this note that, 

 

      
21212121

1111111ˆ  pmmppmpmUpmpmpmH o

 
So next you will find all the eigenstates and the eigenvalues of the Hamiltonian by a method called 
“operator diagonalization”. You have already done something like this when you looked at the photon 
spin operator.  
 
b) Write the Heisenberg equations for the operators    tata 21 ˆ,ˆ  in the matrix form, 
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Find the matrix “M”, and the eigenvalues     ,  of the matrix “M”.  
 

c) Define two new destruction operators,  dd ˆˆ  and , each as a linear combination of the two destruction 

operators, 21 ˆˆ aa  and , such that the time development of the corresponding Heisenberg operators, 

   tdtd 
ˆˆ  and , is given by, 
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The above criteria determines  dd ˆ,ˆ  up to a multiplicative constant. You must choose the 

normalization of the operators  dd ˆ,ˆ  such they satisfy the commutation relations   1ˆ,ˆ 
 dd  and 

  1ˆ,ˆ 
 dd . If you have managed to obtain the correct results you may verify that 

    0ˆ,ˆˆ,ˆ  



 dddd . 

  

d) Using your results in part (c), write each of 21 ˆˆ aa  and  as a linear combination of  dd ˆˆ  and .  
 

e) Using your results in part (d), write the Hamiltonian operator in terms of the operators 
 dd ˆ,ˆ , 


 dd ˆ,ˆ . Does it agree in form with what Alice proposed? If so, what are the energies   and  ? 

 
 

M 
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What you just did is called operator diagonalization of a Hamiltonian. You defined new operators such 
that there are no coupling terms in the Hamiltonian when it is written in terms of the new operators. Of 
course, the problem of physical interpretation remains (i.e. what do the new operators mean? What do 
they create and what do they destroy?). This you will tackle next.       
 
The state   00  is defined as the ground state of the Hamiltonian. It has the property that it is the 

ground state of the “+” mode and the ground state of the “-“ mode in the sense that,  
 

000ˆ  d  

000ˆ  d  

 
(recall that the ground state of a simple harmonic oscillator is defined as the state 0  such that 00ˆ a

) 
 
f) Prove, using the operator relations obtained in part (c), that the state   00 , as defined by the two 

relations above, is the same physical quantum state as 
21

00  . Recall that 
21

00   is defined as 

the state with the following properties, 
 

000ˆ
211 a  

000ˆ
212 a  

g) Argue that the state   qn , obtained as 
   







  00

!! q

d

n

d
qn

 , is an eigenstate of the 

Hamiltonian. What is the corresponding eigenvalue? Hint. Start from the fact that the commutation 

relations for the new operators are   1ˆ,ˆ 
 dd ,   1ˆ,ˆ 

 dd , and     0ˆ,ˆˆ,ˆ  



 dddd . (Recall 

that we were able to get the energy eigenstates of a simple harmonic oscillator just from the commutation 
relations of the creation and destruction operators.)  
 
h) Write the state   qn  as a linear superposition of the states 

21
pm  . Hint: use your solution 

of part (c). You may also find the following operator expansions helpful,  
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Since the states   qn  are eigenstates of the Hamiltonian, you have been able to construct the 

eigenstates from the states 
21

pm  .  

 
i) Now write the state 

21
qn   as a linear superposition of the states   pm .  
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j) Can we say the state 
21

qn   has “n” photons in cavity 1 and “q” photons in cavity 2? If yes, 

explain why? If not, explain why not?  
 
k) Can we say the state   qn  has “n” photons in mode “-“ and “q” photons in cavity “+”? If yes, 

explain why? If not, explain why not?  
 
l) Now that you are done the math, you can go back and try to help Alice and Bob. Suppose the initial 

state of the system is  
211 00ˆ0  at . Explain which photodetector (A, B, or C) will detect a 

photon? 
 
 
Problem 6.3 (Thermal noise in resistors: Johnson-Nyquist noise) 
In this problem you will find the thermal noise (or the Johnson-Nyquist noise) in electrical resistors using 
the methods developed in the course. Consider a slab of material of length L , cross-sectional area A , and 
conductivity  , as shown in the figure below,  

The resistance of the slab is given as 
A

L
R


 . The conductivity is related to the electron density n , and 

electron scattering rate 1 , by the relation
m

qn 
2

 , where q  is the electron charge and m  is the 

electron mass.  
 
The total current can be written as, 
  

   


N

j
j tv

L

q
tI

1
 

 
where the sum is over the velocities of all the  nALN   electrons in the slab. We assume (as in the 

lecture notes) that in the absence of any applied electric field, the velocity  tv j  of the j-th electron 

obeys a Langevin equation,  
 

     
m

tF
tv

dt

tvd j
j

j 

1

 

 
where the Langevin forces  tF j  have the following properties,  

 



L 

A 

I (t ) 
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The second relation implies that velocity kicks imparted to different electrons are uncorrelated.  
 

a) What must be the value of A so that  
m

TK
tv B

j 2 for large values of time t ? 

 
b) Because the Langevin forces “kick” the electron velocities, the resulting velocity fluctuations of 
electrons result in current fluctuations in the circuit and these current fluctuations can be measured 
experimentally. Find the current correlation function      2121 , tItIttRII   when the times 21 tt  and  

are both very large so that all initial conditions are irrelevant? 
 
c) Using the result in part (b), calculate the spectral density  IIS  of the current.  
 
d) Find the spectral density  IIS  of the current by solving the Langevin equation for the velocity of 
each electron entirely in the frequency domain.  
 
e) What is the low frequency value of the current spectral density? Write  0IIS  in terms of the 
resistance R  of the slab. Does it seem familiar?  
 
If you did everything right, you obtained the expression for the spectral density of thermal noise in 
resistors (also called the Johnson noise).  
 
 
Problem 6.4 (Field Heisenberg equations and some polarization algebra) 
In the lecture handouts we found the following equal-time commutation relations between the fields: 
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a) Find the Heisenberg equations for the time evolution of the fields: 
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Hint: Might be easier to find the equation for one component first and then assemble the result in vector 
notation.  
 
b) Prove the following 3 relations: 
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