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Department of Electrical and Computer Engineering, Cornell University 
 

ECE 5310: Applied Quantum Optics for Photonics and Optoelectronics 
 

Fall 2013 
 

Homework 5        Due on Oct. 08, 2013 (self-grade) 
 
 
 

Midterm: Midterm will take place in mid October immediately after the Fall break. 
    
Problem 5.1: (Explorations in quantum optics) 
This problem will explore the concept of a “photon” in more detail. You will learn how the probability 
distribution of the field strengths can be calculated for different photonic states. This problem will tie 
together much of what you learned about basic quantum mechanics earlier in the course and bring 
together many fundamental concepts. Most of the calculations are simple and can be done in one line 
provided you understand the concepts.  
 
The operator equations for a simple harmonic oscillator (particle in a quadratic potential well) are,   
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Just from the commutation relation   ipx ˆ,ˆ , and the fact that operators x̂  and p̂  have eigenkets x  

and p  that satisfy the completeness relations, we were able to transform the Shrodinger equation in the 

operator form,  
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into a differential equation of the form , 
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The time-independent form of the above equation yielded the eigenenergies and eigenfunctions of a 
simple harmonic oscillator.  
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The eigenfunctions  xn  (for n=0,1,2,3,…..) are Hermite Gaussians, and are given below,  
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Now consider a single mode of electromagnetic field inside a cavity. Since we are only considering a 
single mode of the field, I will drop the mode index “m” from all the operators and the states (but 
keep it for the mode frequency). The Hamiltonian is, 
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The electric and magnetic fields (in the Schrodinger picture) are related directly to the operators p̂  and q̂  
as follows, 
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Since the electric and magnetic fields are physical observables, the operators p̂  and q̂  are also physical 
observables and are Hermitian. These operators represent the field amplitudes. They will have eigenstates 
q  and p  that will satisfy the completeness relations,  
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a) Starting from the commutator for the field variables   ipq ˆ,ˆ , and using the completeness relations 

for the eigenkets q  and p , show that  
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b) We can expand any quantum state of a single mode electromagnetic field in the q  eigenkets as 

follows:     qtqdqt 
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c) The vacuum state 0  of the electromagnetic field (associated with the mode under consideration) can 

be expanded in the q  basis set. Find the coefficients of this expansion.  

d) The number state 2  of the electromagnetic field can be expanded in the q  basis set. Find the 

coefficients of this expansion.  
e) Suppose we prepare the single photon state 1  inside the cavity. If a measurement is made at the 
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

 to determine the magnetic field strength, given by the operator  rĤ
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f) Suppose we prepare the number state 2  inside the cavity. If a measurement is made at the location r
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to determine the magnetic field strength, given by the operator  rĤ
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can never be obtained as a result of this measurement.  
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h) Suppose the field is in the state 2  (i.e. a state with a definite number of photons). A magnetic field 
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of the field immediately after the measurement? Write your answer as a linear superposition of photon 
number states n . Try to explain where the other photons came from?  

 
Problem 5.2: (Working with photon number states) 
In this problem you will get some practice with different photon states. The Hamiltonian of the field in a 
cavity is, 
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If a measurement is made to determine the number of photons in mode “m”, what is going to be the mean 
result? What is going to be the standard deviation? 
 
b) Suppose the state of the field is described by a density operator,  
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If a measurement is made to determine the number of photons in mode “m”, what is going to be the mean 
result? What is going to be the standard deviation? 
 
Hint: Here you will encounter the first case of complexity creeping in. When you take averages w.r.t. a 
density operator you do a trace operation and for that purpose you use any complete basis set. Here you 
have a problem that deals with two modes of the field so the appropriate complete basis set to use is not 
the following, 
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Since this only works in the Hilbert space of mode “m”. You need to use a complete basis for the Hilbert 
space of the two modes,  
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If I ever gave you a density operator that dealt with three modes, you should use a complete basis set in 
the Hilbert space of those three modes. Make sure you understand all the confusing indexing and labeling 
procedures before attempting the problem. 
 
c) For the state of the field given in part (b), if a measurement is made to determine the number of 
photons in mode “p”, what is going to be the mean result? What is going to be the standard deviation? 
 
d) For the state given in part (a),  if a measurement is made to determine the TOTAL number of photons 
in all the modes what is going to be the mean result? What is going to be the standard deviation? 
 
e) For the state given in part (b), if a measurement is made to determine the TOTAL number of photons in 
all the modes what is going to be the mean result? What is going to be the standard deviation? 
 
f) Suppose the state of the field is described by a density operator,  
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If a measurement is made to determine the TOTAL number of photons in all the modes what is going to 
be the mean result? What is going to be the standard deviation? 
 
Points to ponder: 
In real life, the way you will do a measurement of the number of photons in mode “m” (or “p”) is by 
sticking a photodetector inside the cavity that will respond to only photons at frequency of mode “m” (or 
“p”). You can do a measurement of the TOTAL photon number by using a photodetector that responds to 
frequencies of both the modes, but then you may not get information about how many photons were in 
each mode since you made a total photon number measurement. Notice that the process of measurement 
destroys the photon (i.e. destroys the state we want to measure). Can you think of a photon number 
measurement scheme that would NOT destroy the photons it was trying to count? 
 
Problem 5.3: (More averages) 
In this problem you will get some more practice with different photon number states. Calculating these 
averages quickly can only be learnt through practice. The Hamiltonian of the field in a cavity is, 
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where   nmnm aa ˆ,ˆ . The photon number operator for the mode “m” is mmm aan ˆˆˆ  .  
 
a) The quantum state of the field is (notice the “off-diagonal” elements): 
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confirm that  ̂Tr =1.  
 
b) For the state in part (a) calculate the following: 
 

(1) mn̂    (7) pm nn ˆˆ   

(2) pn̂    (8) pm aa ˆˆ   

(3) mâ    (9) mp aa ˆˆ   

(4) pâ    (10) 
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(5) 
mâ    (11) pm aa ˆˆ  

(6) 
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