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Department of Electrical and Computer Engineering, Cornell University 
 

ECE 5310: Quantum Optics for Photonics and Optoelectronics 
 

Fall 2013 
 

Homework 4      Due on Oct. 1, 2013 (self-grade)  
 
 
 

Problem 3.1: (EIT and Autler-Townes Doublet in the Dressed State Formalism) 
In the lectures, we discussed EIT and derived the susceptibility working in the basis 1e , 2e and 3e . 

In this problem, you will work with the time-independent Hamiltonian, and work in the dressed basis 

1e , av  and bv  and re-derive the expression for the susceptibility. The starting point is the 

Hamiltonian in the dressed basis, 
 
 
 
 
 
 
 
 
where, 
 
 
 
 
 
In the lecture handout, when we used the time-dependent Hamiltonian for EIT, we wrote in steady state, 
 
 
And then the susceptibility was given by the simple expression, 
  
 
 
When using the time-independent Hamiltonian above, in steady state one would get, 
   
 
And then the susceptibility could be obtained using the same expression as given above.  
 
a) Write the density matrix element  t31  in terms of the elements  ta1  and  tb1  in the basis 1e , 

av  and bv . It should only depend on the difference    tt ba 11    

 
b) Starting from the density matrix equation, 
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Drive equations for the elements  ta1  and  tb1 . You can assume that the populations do not change 

when calculating linear response, and so if at time 0t  the electron was in state 1e  then assume that 

111   and 0 bbaa   for all time.  
 
c) When modeling decoherence in the lecture handouts we assumed that, 
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And then we assumed that 012  . Working under the assumption that 012  , but 013  , how 
would you modify the equations you obtained in part (b) to include decoherence due to the fact that 

013  . You need to add terms in the equations for  ta1  and  tb1  obtained in part (b), and these 

terms should depend on 13 . Hint: results from part (a) will be helpful.  
 
d) Define, 
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and, using results from part (c), write down uncoupled second order differential equations for  td  and 

 ts .  
 
e) Argue that  td  will have a well-defined steady state value, and the find that value.  
 
f) Since the susceptibility only depends on the steady state value of  td  (see part (a) above), find the 
susceptibility and compare with the expression in the lecture handouts.   
 
Problem 3.2: (Dressed State Formalism and AC Start Effects) 
Consider the problem in which a state 1 in a potential well is coupled (via tunneling) to a state 2 in an 
adjacent potential well. The other well has two states and these two states are coupled by strong radiation 
that is tuned to the energy separation of levels 2 and 3 (without detuning).  
 

 
 
 
 
 
 
Suppose one can tune the energy 1  of the state 1 (by applying a DC electric field from outside or by 
applying strain if this was a semiconductor material). We need to find out what ought to be the optimal 
energy of the state 1 such that an electron sitting in that state can easily tunnel from one well into the 
other. Of course, the answer is easy and trivial if there was no radiation present and for tunneling we then 
should have 21   . But the answer is not so simple if strong radiation is present (assume UR  23

).  
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a) You will need to come up with a time-independent Hamiltonian RĤ , find the two eigenstates and 
eigenenergies in the well with the two states, and then you can tune the energy of the state 1 to either of 
these energy levels in order for tunneling to happen. Carry out this procedure and find the optimal energy 
of the state 1.  
 
Problem 3.3 (Optical Linear Response: Propagating Fields) 
A two level system interacting with a classical E&M field is described by the Hamiltonian, 

    titiR eeeeeeeeeeH  


 1221222111 2
ˆ 

 

where 2112 ˆ.ˆˆ.ˆ enreqEenreqE ooR


  . Consider a medium made up of two level systems 

with N  systems per unit volume. In the lecture notes, you have seen the derivation for the macroscopic 

polarization density  tP


. This polarization, which is in fact produced by the E&M field, will in turn 
affect the E&M field that produced it, and the goal of this and the next problem is to study this “back 
reaction” since this forms the basis of optical gain and loss in the semi-classical approximation. We 
assume wave-propagation in the +z-direction. E&M wave propagation in the presence of a space 

dependent polarization density  tzP ,


 is described by the Maxwell’s wave equation,  
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In free space, where the polarization density is zero, i.e.   0, tzP


, the solution is, 

        tikzi
E

ntikzi
E

ntkzEntzE oo
o   exp

2
ˆexp

2
ˆcosˆ,


 

In the following parts suppose an E&M wave enters a medium of length L  which contains our two level 
systems. 
  
Assume that the amplitude of the E&M wave is so small that it does not cause a significant change 
in the populations of the two-level systems as it propagates through them. So the populations 
remain constant. Of course, this is only an approximation but it is not a particularly bad one in the 
linear response regime.      
 

You need to solve equation (1) above in the presence of  tzP ,


. To do this, assume a solution in which the 
amplitude of the E&M wave is slowly changing in space (slowly varying envelope approximation in 
space),    

           tikzi
zE

ntikzi
zE

ntzE oo   exp
2

ˆexp
2

ˆ,
*

     

This amplitude change is caused by the material polarization density. The polarization density  tzP ,


 is 

related to the electric field  tzE ,


 at the same location through    as shown below,  

              tikzi
zE

ntikzi
zE

ntzP o
o

o
o   exp

2
ˆexp
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(1) 

(3) 

(2) 
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The expression for    is the same as that calculated in the lecture notes (without making the rotating 
wave approximation), and the populations are those calculated in part (a) of this problem. Since the 
amplitude of the E&M wave is changing slowly, one may make the following approximation,  

            tikzi
z

zE
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niktzEktzE oo  
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where the terms that have second space derivatives of the amplitudes  zEo  have been ignored.  
 
a) Substitute equations (2) and (3), along with the approximation in equation (4), in equation (1) and 
derive simple first order differential equations for the amplitude of the E&M wave. Your answer should 
look like,  

 
 

??



z

zEo  

 
 

??
*





z

zEo  

Hint: After making all the substitutions, match the time dependencies given by the exponentials on both 
sides of equation (1) to project out the desired equations. No need to do any integrations.  
 
b) What does the real part of    do to the complex E&M wave amplitude? Does it change the value of 
the propagation vector k ? 
 
c) What does the imaginary part of    do to the complex E&M wave amplitude?  
 
NOTE: You should have seen that the E&M wave amplitude changes as it propagates. This must mean 
that photons are either taken away from the wave or added to the wave as it propagates. And this in turn 
means that the populations in the two-level-system medium must change if the medium emits or absorbs 
photons. So our assumption that the population remains constant is not entirely correct.   
 
Problem 3.4 (Optical Linear Response: Cavity Fields) 
You solved for the effect of the medium on the E&M field when the field was a propagating wave. One 
can do the same for fields confined in cavities, and this you will do here. Suppose the field is confined 
within a cavity filled with a medium that contains our two-level systems as shown below.  

 
 
The electric field inside the cavity satisfies, 
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When the polarization density   0, trP


, the solution for the field amplitude of the m-th cavity mode is, 

      trUEtrE mmm cos,
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Only the m-th mode is assumed to be close to resonance with the two-level-system medium and, 

therefore, all other modes can be safely ignored. When   0, trP


, assume a solution in which the 
amplitude of the m-th mode of the E&M field is slowly changing in time (slowly varying envelope 
approximation in time), 

              tirU
tE

tirU
tE

trE mm
m

mm
m  exp

2
exp

2
,

* 
  

Since the amplitude is assumed to be changing slowly in time, our previous analysis of two level systems 
excited with time-independent field amplitudes remains valid, and the polarization density can be 
approximated as,  

                  tirU
tE

tirU
tE

trP mm
m

momm
m

mo  exp
2

exp
2

,
*

* 
  

As before, assume that the populations do not change with time. Since the field amplitude is slowly 
changing in time, make the following approximation,  
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where the terms that have second order time derivatives of the field amplitudes  tEm  have been ignored. 
Also, for the polarization one may assume that, 
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where even terms that have first order time derivatives of the field amplitudes  tEm  have been ignored. 
This is justified since keeping these terms would not change the final answer by much within the level of 
our approximations.  
 
a) With the approximations mentioned above, use equation (1) and obtain simple first order differential 
equations for the field amplitudes. Your answers should look like,  
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Hint: After making all the substitutions, match the time dependencies given by the exponentials on both 
sides of equation (1) to project out the desired equations. No need to do any integrations.  
   
b) What does the real part of  m  do to the complex E&M field amplitude as time progresses? Does it 

effectively modify the mode frequency m ? If yes, does it move it closer to the resonance frequency of 
the two level systems or further away from it?  
 
This effect is called “micro-cavity frequency pulling”. The mode frequency of a “loaded” cavity (that is 
filled with medium that interacts with the mode) is not the same as that of a “bare” cavity. Does the 
frequency pulling depend on the population difference 1122   ? 
 
c) What does the imaginary part of  m  do to the E&M field amplitude as time progresses?  
  
NOTE: You should have seen that the E&M wave amplitude changes in time. This must mean that 
photons are either taken away from the wave or added to the wave as time goes on. And this in turn 
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means that the populations in the two-level-system medium must change if the medium emits or absorbs 
photons. So our assumption that the population remains constant is not entirely correct.   
 


