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Department of Electrical and Computer Engineering, Cornell University 
 

ECE 5310: Quantum Optics for Photonics and Optoelectronics 
 

Fall 2013 
 

Homework 3      Due on Sep. 24, 2013 (self-grade)  
 
 

 

Problem 3.1: (Density operators and optical Bloch equation) 
In this problem you will continue to explore the Bloch sphere dynamics with decoherence and relaxation 
BOTH included in the model. Consider the time dependent two-level system problem where a time-
dependent electric field interacts with a two level system, 
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The detuning is given by    12 . The equations for the components,  tVx ,  tVy , and  tVz  

are now as follows, 
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Parts (a)-(e): Suppose   10 et  , and at time 0t  an electromagnetic field with zero detuning 

is turned on.    
 
a) Derive the uncoupled second order differential equations for each of the components  tVy  and  tVz . 

Since the detuning is zero, and the initial quantum state is such that   00 tVx ,  tVx  will remain 

zero for all time 0t , and all the action is in the y-z plane.   
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b) Solve the differential equations derived in part (a) with initial conditions corresponding to the initial 
quantum state   10 et  , and obtain  tVy  and  tVz  as functions of time. Find the time period of 

one complete oscillation (i.e. the time it takes the vector  tV


 to go once around the sphere and come 
back to the starting location)?  
 

c) What is  tV


 at time t ? Sketch the motion of the tip of the vector  tV


 in the y-z plane.  
 
d) Can you describe the final state by a state vector  t ? If so, what is  t ? If not, why 

not?  
 
e) Can you describe the final state by a 2x2 density matrix  t̂ ? If so, what is  t̂ ? If not, why 
not? 
 
 
Problem 3.2: (Atomic clocks) 
In this problem you will analyze the timing/frequency performance of an atomic clock. Consider a 
Cesium atomic clock, as discussed in the lecture handouts. Assume no decoherence or relaxation. The 
Ramsey Fringes are shown below.  
 
In lecture handouts it is mentioned that the occupancy of the upper level at the end of the second /2 pulse 
is, 
  
 
 
a) Prove the relation above. 
 
 
b) Suppose the quantum state of an atom at the of the second pulse is written as, 
 2211 ecec   

What are the values of 
2

1c  and 
2

2c ? 

 
c) Suppose at the end of the second pulse a measurement is made on a single atom to determine the 

occupancy of the upper level. The average obtained as a result of this measurement is obviously 
2

1c . 

What is the uncertainty or variance in the measurement result? Hint: Need to find, 

 
2

2
2
2

2
2

ˆˆˆ NNN   

d) In an actual experiment many atoms, say aN , are used and not a single atom, and the upper level 
occupancy for all the atoms is determined jointly. We define an operator for such as a measurement as 
follows,   
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where the summation is over the number operators for all the aN  atoms. What is the average (or 

expectation) value of allN2
ˆ  at the end of the second pulse? 
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e) What is the uncertainty or variance in allN2
ˆ ? Hint: Need to find, 
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f) Is it beneficial to make a joint measurement on all atoms or a measurement on just a single atom to 
determine the upper level occupancy at the end of the second pulse? 
 
 
The center frequency of the two pulses is slightly detuned from the atomic resonance such that the 

average upper level occupancy allN2
ˆ  at the end of the second pulse is not 1 but 0.5, as shown by the 

intersection of the two lines in the Figure. This means that the ideal detuning is such that, 
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This detuning determines the ideal center frequency o  of the pulses, 
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The idea behind using the Cesium atoms is to ensure that the actual frequency   of the pulses remain 
locked as closely as possible to the value o . The reason for choosing o  in such a way (as opposed to, 

say, just  ) is because for this value any slight variation in the actual frequency   from the ideal 

frequency o  will generate a large change in the measured value of allN2  and then this feedback can be 

used to adjust the frequency of the pulses and move it back to o .  

 
 

g) Show that if a small variation in frequency o   results in a value for allN2  different from 0.5 

at the end of the second pulse then the frequency error   can be determined from, 
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h) There is some intrinsic noise associated with determining the value of allN2 (part (d) of this problem). 

This will translate into an intrinsic noise in determining  . To see this clearly, make the observed 

frequency variation an operator related to the operator allN2
ˆ  as follows, 
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Find the uncertainty 2̂  in determining the frequency error? This answer tells you that the frequency 

 , or equivalently the frequency difference  , cannot be determined with arbitrary accuracy.   
 
The cycle time cT  is the time taken to complete one frequency measurement (which involves preparing 
the Cesium atoms in the right initial state, subjecting them to the two pulses, and then measuring the 
upper level occupancy). Suppose  n  is the frequency of the RF pulses during the n -th cycle. The 

frequency error   on    was determined and the frequency was adjusted in the  1n -th cycle 
according to the rule, 
       onnn  1  

where,   is a feedback parameter, typically much less than unity. The quantity in the brackets is the error 
signal. Equivalently we can write, 
       nnn   1  

The problem with the above relation is that it does not capture the fact that the error     onn    
cannot be determined with infinite accuracy in a measurement. To incorporate this feature into the above 
equation we write, 
         nFnnn   1  

where,  nF  is a classical variable that models the intrinsic noise in determining the frequency error. 
From part (g) we can write, 
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The averaging above implies averaging with respect to different cycles. The last equation says that the 
noise in determining the frequency error is completely uncorrelated from cycle to cycle, as one would 
expect. So finally we have, 
        nFnn   11  

The errors     onn    are correlated from cycle to cycle. This happens because   is small and 
the feedback mechanism does not completely correct for the error in just one cycle (otherwise the 
feedback can cause instability). 
 
i) Show that, 
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In practice, the frequency  n  is averaged over many cycles and the output RF oscillator of the 
atomic clock is tuned to this average value. So we define an average frequency (averaged over N 
cycles) as, 
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j) Argue from results obtained in previous parts, that if N  is large enough then,  
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The relative frequency stability is defined as, 
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k) The integration time  is defined in terms of the cycle time and the number N of cycles used in 
averaging as, cNT . Show that, 
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where the quality factor Q of the fringes is defined as, 
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Compare your results with those in: Physical Review Letters, 82, 4619 (1999). What did we 
miss? 
 
l) Consider a Cesium atomic clock with the following parameters: 
 

GHz  192.92

s 10

eatoms/cycl 10
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Find the relative frequency stability? 


