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Department of Electrical and Computer Engineering, Cornell University 
 

ECE 5310: Quantum Optics for Photonics and Optoelectronics 
 

Fall 2013 
 

Homework 2                      Due on Sep. 17, 2013 (self-grade)  
 
 

 
OPTIONAL READING: A good (short but nice) description of density operators can be found in 
compliment EIII of chapter 3 of “Quantum Mechanics: Volume I” by Claude Cohen-Tanoudji.  
 
Problem 2.1: (Fermi’s Golden Rule for Time-Dependent Problems) 
In the class we saw that in systems time dependent behavior can take the form of periodic oscillations or 
just a one-shot decay (or a one-shot transition) described by Fermi’s Golden Rule. And which of the 
above happens depends upon whether the final possible state(s) is a single state or a large number of 
closely spaced states (i.e. a continuum of states). In this problem you will derive the Fermi’s Golden Rule 
for transitions caused by electromagnetic radiation.    
 
In the last homework set you saw that the time dependent Hamiltonian that described the interaction 
between a two level system and a time dependent electric filed is,  
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where the parameter R is related to the electric field strength.  
 

 
 
Here the problem is changed a little. The upper state 2e  is replaced by a large collection of states ke , 

with energies k , that form a continuum characterized with a density of states  D  (i.e. the number of 

states within an energy interval d  is    dD ) as shown in the figure below.  
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Fig. p2.1a: A driven two level system 

Fig. p2.1b: The upper level is 
replaced with a continuum of states.  
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The Hamiltonian of the problem becomes, 
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Suppose the initial quantum state of the particle at 0t  is,  
  00 et   

The state of the particle at time t  can be written as, 
       k

k
k etcetct  00  

a) Following the method used in the problem of particle decay from a well given in the lecture notes show 
that the probability  tP  that the particle is in the initial state decays approximately as, 

   tP
dt

tPd   

where the “transition rate”   from the lower state to the upper states is given by the Fermi’s Golden 
Rule, 
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Problem 2.2: (Driven Two-Level System in the Heisenberg Picture) 
The object of this problem is to demonstrate the link between time dependent and time independent 
problems in the Heisenberg formalism. You did this in the Shrodinger formalism in the last homework. 
 
Consider again the time dependent Hamiltonian of a driven two level system, 
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Define the following Shrodinger operators as in the lecture notes, 

 2112222111 ˆˆˆˆ eeeeeeNeeN     

So the Hamiltonian becomes, 

      titiNNtH R  expˆexpˆ
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Carefully study all the commutation relations given in the lecture notes among these operators.  
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a) Derive the Heisenberg equations for the Heisenberg operators        tttNtN   ˆ,ˆ,ˆ,ˆ
21 . Hint: 

you need to derive just the equation for  tN1
ˆ  and  t̂ , and recognize that 

   
dt

tNd

dt

tNd 12
ˆˆ

 , and 

that the equation for  t̂  is just the adjoint of the equation for  t̂ . Your answer should be: 
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b) Assume no detuning, i.e.    012     (the frequency of the electromagnetic field is 

exactly the same as the energy level separation). Define new quantities    tt   ˆ,ˆ  as follows, 

           titttitt  expˆˆexpˆˆ    
and show that the Heisenberg equations of part (a) then look like those of a time independent problem that 
we discussed in the lecture notes. Your answer should be:  
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dt

tNd R
 


  ˆˆ

2

ˆ
1  

      tti
dt

tNd R
 


  ˆˆ

2

ˆ
2  

      tNtNi
dt

td R
12

ˆˆ
2

ˆ



  

      tNtNi
dt

td R
12

ˆˆ
2

ˆ



  

c) From the lecture notes, confirm that the solution of the above system results in the following 

expression for  tN1
ˆ ,  

     ti
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Hint: note the following when imposing the boundary conditions: 
           ˆ0ˆ0ˆˆ0ˆ0ˆ tttt  

d) Calculate the average value of  tN1
ˆ  given that the initial state of the system is described by the 

density matrix   









10

00
0ˆ 22 eet . Hint: Use the formula:       tNttN 11

ˆ0ˆˆ  Tr .  

 
Problem 2.3: (A Bloch Sphere Problem) 
In parts (a)-(b) you have to graphically calculate the maximum population difference when the 
detuning   is non-zero using the Bloch sphere picture. If you find yourself doing too much 
computation, you are off track.  
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a) The plane of rotation of the vector  tV


 is perpendicular to the direction given by zxR ˆˆ


   . 

Find the angle   between the plane of rotation and the z-axis for positive values of detuning   (see Fig. 
p2.4d below).   
 
b) Show that the maximum population difference is given by  2cos . Compute its value and compare 
with the answer in the lecture notes.  

 
 
Parts (c)-(d) are together 
 
Consider two possible initial quantum states:  
 

  (1)    21
2

1
0 eiet   

 (2)    21
2

1
0 eet   

 
For each quantum state shown above do the following: 
 
c) Write the density operator at time 0t  in matrix form. Find the three components of the vector 

 0tV


? Indicate the initial state (given by  0tV


) as a black dot on a neatly labeled 3-dimensional 
Bloch Sphere.   
 
d) At time 0t , a time dependent electric field with zero detuning is turned on that interacts with the 

system. Describe the motion of the state vector  tV


 for  0t (i.e. indicate the axis of rotation and the 
plane of rotation and the direction of rotation). Does something strange happen when the initial state is 
(2)? 
 
SOMETHING TO PONDER UPON: Recall that in lecture notes you showed that the time dependent 
problem given by the Hamiltonian,  
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can be transformed into a time independent problem described by the Hamiltonian, 
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Fig. p2.4d: Bloch sphere seen from 
above the North pole. 

plane of rotation 
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In case of no detuning (i.e. when   012    ) one eigenstate of the Hamiltonian RĤ  is given 
by the state (2) above. Do you think this has anything to do with the dynamics you observed in part (d) 

when the initial state is (2)? What if the initial state was the other eigenstate of RĤ ? 
 
 
 
 


