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 Department of Electrical and Computer Engineering, Cornell University 
 

ECE 5310: Quantum Optics for Photonics and Optoelectronics 
 

Fall 2013 
 

Homework 10 (Last one)     Due on Dec.05 at 5:00 PM (self-grade) 
 
 

 
Problem 10.1 (Experimental Observation of Vacuum Rabi Splitting and Single-
Photon Nonlinearities in Optical Cavities) 
You might find this review article related to the problem interesting: Nature Physics, 2, 
81-90 (2006).  
Also, those of you who attended M. D. Lukin’s LASSP talk on 11/26 will find this problem 
particularly relevant.  
 
Consider the following problem discussed in the lecture handouts.  

 
A cavity is connected to two waveguides, as shown. A weak CW coherent state (of tunable frequency) is 
sent from the left (input) waveguide and the transmitted signal is measured at the right (output) 
waveguide. For simplicity, the coordinates for both the waveguides are chosen such that the cavity is 
located at the origin. For the left waveguide the field operators are, 

   ti
L etzb ,ˆ  and   ti

R etzb ,ˆ  
And for the right waveguide, the field operators are, 

   ti
L etzd ,ˆ  and   ti

R etzd ,ˆ  

Note that the field operators are expanded around a frequency   which is not the same as the cavity 
mode frequency o . The frequency   is the center frequency of the coherent state that will be sent into 
the cavity from the outside. The cavity contains a two level system in the ground state. We will assume 
strong coupling regime where, 
   
 
You may also assume that one is in the “Purcell” regime where, 
  
 
 
The goal of this problem is to find out the resonance frequencies that will be observed in this optical 
transmission experiment. Since the input state is weak, and we will be interested in the “linear response” 
of the system, it is safe to assume, to the order we are interested in, that the populations does not change 
during the experiment (and the electron is in the ground state). This also means that the average photon 
number inside the cavity remains very small (much less than unity) during the experiment.  
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The relevant equations for the polarization are, 
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where, one may assume for parts (a)-(e) of this problem, 

     1ˆˆ
12  tNtN  

The equations for the cavity field operators are, 
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And outside the cavity, 
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We may also assume that in the input waveguide, 

   ti
in

ti
R eetzb    ,ˆ  

and in the output waveguide, 

   ti
out

ti
R eetzd    ,ˆ  

The goal of the problem is to find, 

 
in

out




 

as a function of the frequency  . This is the transmission coefficient for the coupled cavity/two-level 
system.   
 
In steady state, we expect that the average values will have the following form, 

   tiet  
 ˆ  

   tiebta ˆ  

And the average photon number inside the cavity is then, 

     2ˆˆ btata   

Here,   and b  are complex numbers that are independent of time. By assumption, 1
2 b .  

 
You can take the average of all the equations right from the beginning, and then solve them in steady 
state.  Assume zero detuning, 
 0 o   
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a) Find the ratio, 

 
in

out




 

as a function of the frequency   by solving all the relevant equations.  
 
b) Find the frequencies at which resonances would occur in the transmission spectrum. 
 
c) If 2T , find the frequencies at which there will be a null in the transmission spectrum (and all the 

light is reflected). Note that if 2T  is not infinite, but large, then the minimum transmission is determined 
by the product,  
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d) Come up with a physical reason to explain (without using math) why is there a null in the transmission 
spectrum (as found in part (c)).  
 
e) Suppose the cavity is in the weak coupling regime, 
    
 
 
Find the frequencies at which resonances would occur in the transmission spectrum.  
 
Now we will let go the assumption that,  

     1ˆˆ
12  tNtN  

Instead, you will first derive the equation for the populations in steady state. If you repeat part (a), without 
the above assumption, then you would obtain that in steady state, 
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where we have assumed that in steady state, 

               tibeNNtaNNtatNtN  121212 ˆˆˆ  

In steady state, the averages of the population equations are, 
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The population relaxation time, assumed to be entirely due to spontaneous emission, is  221 TT  . We 
also have that, 
   112  NN  

f) Find the populations, and the population difference 12 NNNd  , in steady state as a function of the 
average photon number inside the cavity. 
 
g)  If, on the average, you have lots of photons inside the cavity (because a strong light source was used to 
do the experiment) what is the population difference in steady state (still -1, or +1, or close to zero)? Hint: 
don’t forget that, 
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h) From what you (hopefully) discovered in parts (f)-(g), if you were to repeat parts (a) through (c) 
assuming lots of photons inside the cavity, would you still see a null in the transmission spectrum at the 
frequency at which you previously saw the null in part (c)? Why or why not? Present analysis and don not 
assume that 2T  is infinite. If one would like to have a small transmission (at the null frequency) even 
when the average number of photons inside the cavity approaches ~1 then show that one needs to be in 
the Purcell regime where, 
  
 
 
 
Problem 10.2 (Photonic/Optical Communication Systems) 
In this problem you will analyze a long haul fiber optical communication link, and determine the bit error 
probabilities. You will determine the minimum average number of photons for logical 1’s that must 
reach the receiver so that they can be amplified and detected with a BEP (Bit Error Probability) better 
than 10-9. The answer will tell you how many photons are necessary to transmit one bit of information on 
a state-of-the-art fiber link. A simple model for a fiber optical link is shown below. 
 

Optical signal from a laser goes into an optical fiber which has a lossy region of length da. The signal at 
the receiver side is too attenuated to be directly detected with a photodetector. Even the smallest noise 
intrinsic to the photodetector (e.g. thermal noise) can overwhelm the signal. The signal is therefore first 

amplified with an amplifier of length db (which in practice is also a piece of fiber but with gain – called 
an EDFA, which stands for Erbium Doped Fiber Amplifier). The amplified signal passes through an 
optical filter and then it goes into a photodetector.  
 

 
Optical Filter:  
The optical filter is placed in front of the photodetector because, as discussed in the lecture, the amplified 
spontaneous emission (ASE) flux coming out of the amplifier is non-zero over a very wide frequency 
range (actually the entire gain bandwidth of the amplifier). The signal from the laser on the other hand 
generally has a much narrower frequency bandwidth. The optical filter only lets those photons go through 
that are in the signal bandwidth, thereby cutting down on the unnecessary ASE photon flux entering the 
photodetector. This is shown in the figure above. Since the filter rejects the photon outside its 
transmission bandwidth, it makes sense to expand the field operator in this bandwidth only right from the 
start,  
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where 
gvd
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  , and  oo   , and d  is the relevant length (of the fiber or of the gain 

medium etc).  

 
 
 
Input Signal: 
The signal input to the fiber from the laser consists of 0’s and 1’s. Each logical ‘1’ is a coherent-state 
photon packet (or an optical pulse) containing op  average number of photons and occupying a duration 

in time of   and a duration in space of gv . A logical ‘0’ means nothing in a duration in time of   

and a duration in space of gv . So if you stand at one location in the fiber you will observe a signal in 

time that looks like,  

 
And if you take a snapshot of the fiber at any time you will observe a signal in space that looks like,  
 

  

 

 



  

ASE spectrum 
or gain 
spectrum 

optical filter
spectrum optical signal 

spectrum 

o

Time 

 

1 1 1 0 0 



 

 6

 
The data rate is clearly one bit of information per   seconds, or 1  bits/sec. In state of the art 

commercial optical systems data rates are between 10-40 Gbits/sec, so the duration   is between 100 ps 
and 25 ps.  
 
Bit Errors at the Receiver: 
At the receiver the photodetector counts the number of photon in each time bin of duration   and sees if 
the result crosses a certain threshold. If it does it declares a logical ‘1’, and if it does not it declares a 
logical ‘0’. Bit errors can occur at the photodetector in the following way. A logical ‘1’ may loose enough 
photons while traveling in the optical link and be wrongly interpreted as a logical ‘0’. And a logical ‘0’, 
as a result of ASE photons emerging from the amplifier, may end up having enough photons to cross the 
detector threshold and be wrongly interpreted as a logical ‘1’.In this problem you will analyze these errors 
and calculate the probability of the detector making an error. Practical communication systems demand a 
bit error probability (BEP) as low as 10-9. This means only 1 error on the average in every 109 bits 
received by the detector.  
 
Part I: Lossy Fiber 
In this part you will only consider the lossy region of the fiber and forget everything else. The 

propagation in the lossy part of the optical fiber (which is of length da ) is described by the following 
equations,  
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The constant  describes the loss in the fiber. The Langevin noise sources that model the noise coming 
from the loss have the following correlations (make sure you don’t confuse the noise source  tzFL ,ˆ  

with the photon flux operator  tzF ,ˆ ),  
 

    0,ˆ,ˆ  tzFtzF LL                     0','ˆ,ˆ  tzFtzF LL                

       ''','ˆ,ˆ ttzztzFtzF LL    

    0,,ˆ    tzFtzF LL  (the dots stand for any sequence of operators)      

      odd for    L ntzFtzFtzF nn
c
L

b
L

a 0,ˆ,ˆ,ˆ
2211   (the alphabets ‘a’, ‘b’, and ‘c’ mean that the 

operator is an adjoint if the alphabet is ‘+’, or not an adjoint if the alphabet is ‘ ‘).  
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The input to the lossy fiber is a coherent-state packet defined at 0t  by the equation,  
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The function  z  is localized to the left of the lossy region of the fiber in a slot of length gv  as 

shown below: 
 

 
 
I have adjusted the spatial co-ordinate system so that the zero of the co-ordinate system is the beginning 
of the lossy region of the fiber. The input photon number operator is defined as: 
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The output photon number operator is defined as, 
 










 




g

ga
vd

dg
out v

vd
zFdz

v
N

ga

a


,ˆ1ˆ  

 
Solution:  
 
The solution of the lossy fiber equations can be written as (see if you can derive it), 
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(and the corresponding adjoint, of course) 
 
The solution given above is valid provided,  
 
i) the location z  is greater than ad  (i..e to the right side of the lossy region), and  
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ii) the time t  is sufficiently large so that the location tvz g  is before the start of the lossy region of the 

fiber (i.e.  0 tvz g ).  

 
a) Calculate the following quantities (remember the averages are with respect to the initial state): 
 

outN̂  

2ˆ
outN  

 
and express your answers in terms of the power attenuation factor  L , defined as  adL 2exp  , and 

the quantities: inN̂  and 2ˆ
inN  

 
Hint: answers should be (and this should not come as a surprise), 
 

LpLNN oinout  ˆˆ  
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Part II: Amplifier  
In this part you will only consider the amplifier and forget everything else. The propagation in the 

amplifier (which is of length db ) is described by the following equations: 
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where g describes the amplifier gain (units: length-1) and the Langevin noise sources that model the noise 
coming from the gain have the following correlations, 
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2211   (the alphabets ‘a’, ‘b’, and ‘c’ mean that the 

operator is an adjoint if the alphabet is ‘+’, or not an adjoint if the alphabet is ‘ ‘). And finally, if n is even 
then we can brake up the correlation function into a sum of products of all non-zero pairings (paying due 
regard to the operator orderings), e.g., 
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In this course I never showed you a full microscopic derivation for the gain (units: length-1) for a traveling 
wave amplifier. I showed you the derivation for the gain (units: time-1) in the case of a cavity field 
interacting with two level systems. The nice thing that quantum mechanics provides is that one can get the 
form of the noise sources in the traveling wave amplifier without knowing or having to model the full 
microscopic details of the amplifier.   
 
The input to the amplifier is some unknown packet state localized at 0t  to the left of the amplifier in 
a slot of length gv  as shown in the figure below,  

 

 
 
I have again adjusted the spatial co-ordinate system so that the zero of the co-ordinate system is the 
beginning of the amplifier. The input photon number operator is defined as: 
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The only two things we know about the input state are the following: inN̂  and 2ˆ
inN . The output 

photon number operator is defined as, 
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Solution:  
The solution of the amplifier equations can be written as, 
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(and the corresponding adjoint, of course) 
 
The solution given above is valid provided,  
 
i) the location z  is greater than bd  (i..e to the right side of the amplifier), and  

ii) the time t  is sufficiently large so that the location tvz g  is to the left side of the amplifier (i.e.  

0 tvz g ).  

 
b) Calculate the following quantities (remember the averages are with respect to the initial state),  
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2ˆ
outN  

 
and express your answers in terms of the power gain factor  G , defined as  bdgG 2exp , and the two 

input quantities that are known inN̂  and 2ˆ
inN .  

 
Hint: answers should be:  
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Putting it All Together: 
We know that in the system under consideration the photon packet state that goes into the amplifier is the 
packet state that comes out from the lossy fiber. Therefore, in the expressions obtained in part (b) you can 

replace inN̂  and 2ˆ
inN  by the values outN̂ and 2ˆ

outN , respectively, that were calculated in part 

(a).  
 
Also, since the packet state that goes into the photodetector is the packet state that comes out of the 

amplifier, the average number of photons dN̂  counted by the photodetector in duration   and the 

mean square fluctuations in the photodetector photon counts 2ˆ
dN  are therefore equal to outN̂ and 

2ˆ
outN , respectively, that were calculated in part (b).  

 
c) Using the above facts show that for the coherent state packet state generated by the transmitter the 

values of dN̂  and 2ˆ
dN  are,  
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Part III: Bit Error Rates 
When logical 1’s enter the photodetector we have (as calculated in parts a-c): 
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When logical 0’s enter the photodetector we have (set op  equal to zero in the equations above for logical 
1’s)  
 

 1
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0  GnNn spd 
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Note that the non-zero values in case of logical 0’s are due to the ASE photons coming out from the 
amplifier. ASE photons are continuously coming out. This is why it is important to have an optical filter 
that limits the number of spontaneously emitted photons entering the photodetector to the minimum 
possible values.  
 
We don’t know the actual probability distributions of the photons in logical 1’s and logical 0’s. We have 
calculated only the average values and the variances. It turns out that it is not a bad approximation to 
assume the probability distributions to be Gaussians (this assumption has an accuracy of 90% if the 
results are compared with the complicated actual distributions). The probability distributions  nP1  and 

 nP0  for the photon counts by the detector for logical 1’s and logical 0’s, respectively, are therefore,  
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These probability distributions are sketched in the figure above. A system designer must decide upon a 
threshold photon number cn  so that if the number of photons counted in any one bit interval of duration 

  comes out to be larger than cn  then a logical 1 is declared, and if the number of photons counted is 

smaller than cn  a logical 0 is declared. These decisions are made by electronic circuitry in the receiver.  
 
The bit error probabilities are defined as follows: 
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i) The probability )1|0(P  for a logical 1 to be wrongly interpreted as a logical 0 is: 

    dnnPdnnPP
cc nn
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ii) The probability )0|1(P  for a logical 0 to be wrongly interpreted as a logical 1 is: 

  dnnPP
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If the threshold photon number cn  is chosen too large then )1|0(P  will become too large and )0|1(P  

will become too small. If the threshold photon number cn  is chosen too small then )1|0(P  will become 

too small and )0|1(P  will become too large. So the best way to choose the threshold photon number cn  

is such that  )1|0(P  is equal to )0|1(P . You can convince yourselves that for Gaussian distributions 

)1|0(P  equals )0|1(P  if cn  is chosen such that    cc nPnP 10  . The value cn  is indicated in the 
figure, and it comes out to be, 
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We then have the final result for the bit error probability (BEP),  
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d) The average number of photons for logical 1’s that reach the receiver is Lpo . In this problem you will 
determine the minimum average number of photons for logical 1’s that must reach the receiver so that 
they can be amplified and detected with a BEP better than 10-9. Assume the following values (these are 
typical for fiber optical communication systems), 
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) Gb/s 40 of rate data a  toding(corresponps  251200 spnG  

 
Plot log10(BEP) as a function of Lpo  (choose values of Lpo  between 0 and 250 for the plot). What is 
the minimum number of photons that must reach the receiver in order to get a BEP less than 10-9? Hint: 
Matlab has a erfc function that you can use.  
 
The experimentally measured minimum number of photons required for a BEP of 10-9 for 
parameter values close to what we assumed is typically between 100 and 150 photons.    
 
e) Repeat part (d) for a non-ideal amplifier (that is not fully inverted) and assume the following values: 
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What is the minimum number of photons that must reach the receiver in order to get a BEP less than 10-9 

in this case? Lesson: the level of inversion in the amplifier affects the receiver performance.  
 
f) Assume that at the transmitter the average number of photons generated by the laser in the coherent-

state packet for transmitting logical 1 is one million (i.e. 610op ). Typical power losses in the fiber are 

0.2 dB/km, and this corresponds to a value of 0.023 km-1 for the constant   for the lossy fiber. From the 

Lpo  value calculated in part (d) for a BEP of 10-9, figure out the maximum distance that the data can 
travel on the lossy fiber before it gets too attenuated to be detected with a BEP of 10-9. For the maximum 
distance you calculate, what is the value of the attenuation factor L ? 
 
g) Suppose Alice and Bob come to you and tell you that they just developed a super light source that 
generates number-state photon packets (as opposed to coherent state photon packets). They claim that 
since number-state packets have zero variance in the photon number, their new light source should work 
much better in optical links and should reduce the BEP at the receiver compared to conventional lasers 
that (supposedly) produce coherent-state packets. Your job is to decide whether what Alice and Bob are 
saying makes sense.  
 
Assume that the super light source generates number-state photon packets with the number equal to 

610op . Use the value for L  determined in part (f), and use,   
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) Gb/s 40 of rate data a  toding(corresponps  251200 spnG  

and calculate BEP when the super light source is used in the transmitter. Is the BEP much less than 10-9 – 
the value that coherent state packets achieved for the same parameter values and for the same average 
number of photons in the logical 1 state coming out of the transmitter? Is the light source of Alice and 
Bob really super? 
 
Hint: The answer can be written in one line (i.e. no computation required!). Of course, you can also 
quickly plug in the values and get the answer since you have all the formulas.  
 
 


