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Department of Electrical and Computer Engineering, Cornell University 
 

ECE 5310: Quantum Optics for Photonics and Optoelectronics 
 

Fall 2013 
 

Homework 1    Due on Sep. 10, 2013 by 5:00 PM (self-grade) 
 
 

 
Problem 1.1: (Commutators) 
 
If the commutator of two operators Â  and B̂  is   iBA ˆ,ˆ . Show that, 
 

a)    1ˆˆ,ˆ  nn BniBA   

b)     BFiBFA ˆ'ˆ,ˆ   where F is any polynomial function and F’ is its derivative.   

c)      BA
i

BA ˆexpˆexp
2

expˆˆexp 








 

d)      AB
i

BA ˆexpˆexp
2

expˆˆexp 








 

e)  













 BA

i
BA

i ˆˆexpˆˆexp


, where   is a complex number.   

 
Problem 1.2: (Measurement and wavefunction collapse) 
 

Consider two physical quantities A and B, with corresponding Hermitian quantum operators Â  and B̂ , 
associated with an object. These operators have eigenvectors and eigenvalues given by: 
 

kkk aaA ˆ  (k=1,2,3,4,5,….) 

kkk bbB ˆ  (k=1,2,3,4,5,….) 

 

The inner products between the two sets of eigenvectors are given by kjjk ba  . Suppose the 

quantum state of the object is 
k

kk a , where 1 . All eigenvalues of both the 

operators are distinct. Your answers for parts (a)-(d) must be expressed in terms of the expansion 
coefficients k  and the inner products kj .  

 
a) A measurement of quantity is A is made. What is the probability of obtaining the result j  ? What is 

the wavefunction just after the measurement given that the result j  was obtained ? 

b) A measurement of quantity is B is made. What is the probability of obtaining the result j  ? What is 

the wavefunction just after the measurement given that the result j  was obtained ? 
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c) A measurement of quantity B is made and the result j  is obtained. Immediately after the first 

measurement a second measurement is made of quantity A. What is the probability of obtaining the result 

j  ? 

 

Now suppose that the first three eigenvalues of Â  are the same (i.e.   321 ) and the first 

three eigenvalues of B̂ are also same ((i.e.   321 ). As before, the quantum state of the object 

is given as 
k

kk a  and 1 . 

 
c) A measurement of quantity is A is made. What is the probability of obtaining the result   ? What is 
the wavefunction just after the measurement given that the result   was obtained ? 
d) A measurement of quantity is B is made. What is the probability of obtaining the result   ? What is 

the wavefunction just after the measurement given that the result   was obtained ? 

 
Problem 1.3: (Time dependent two-level system) 
 
The object of this problem is to show that with a suitable transformation the time dependent Hamiltonian 
of a two level system interacting with a classical electromagnetic field becomes a time independent 
Hamiltonian of the form studied in class. In the presence of a time dependent electric field the 
Hamiltonian of a two level system is, 
 

   tExqeeeetH o  cosˆˆ
212211   

 
In the two dimensional Hilbert space, the above Hamiltonian can be written as, 
 

      1221222111 cos2cos2
2

ˆ eeteeteeeetH R  





 

 
where 2112 ˆˆ exeEqexeEq ooR  .  

 

 
 

Note that       titit   expexp
2

1
cos . In the so called rotating wave approximation only the 

important resonant term in each cosine term is retained (we will discuss this later in the course) and one 
obtains, 
 

1 
1e

2e
2 

Eo cos( t ) Fig. p1.3: Two level system 
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ˆexpˆexp
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expexp
2

ˆ

2211

1221222111

titiNN

eetieetieeeetH

R

R





 

 
The Hamiltonian above is used to describe the interaction of a classical electromagnetic field with a two 
level system. The quantum state  t  of the system obeys the Schrodinger equation with a time 

dependent Hamiltonian, 
 

     ttH
t

t
i 

 ˆ



  

 
a) Show that the following relation holds, 
 

    1expˆ1ˆexp 11  tiNtNi   
 
b) Show that the state   t  defined by the relation, 

 

     ttNit  1
ˆexp   

 
obeys the Schrodinger equation with a time independent Hamiltonian, i.e. 
 

   tH
t

t
i R 

 ˆ



  

 

where RĤ  is given by, 
 

    


  ˆˆ
2

ˆˆ ˆ
2211

R
R NNH


  

 
For parts (c)-(f) assume   012     (i.e. the electromagnetic field frequency is perfectly tuned 
with the energy level spacing of the two level system).  
 
c) Given the initial condition     100 ett   , calculate  t . 

d) Using  t  determined in part (c), calculate  t .   

e) Using  t  determined in part (d), evaluate   2
1 te  .  

f) Using the relation given earlier, 2112 ˆˆ exeEqexeEq ooR  , calculate the mean 

position of the particle (defined as    txt  ˆ ). What is the frequency of oscillation of the mean 

particle position? What kind of motion is the particle doing and is it what you expected? 
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Problem 1.4: (A detuned two level system) 
 
The Hamiltonian of a coupled two level system is as follows, 
 

 1221222111
ˆ eeeeUeeeeH    

 
Or equivalently, 
 

    ˆˆˆˆ ˆ
2211 UNNH  

 
where   12  (i.e. the two energy levels don’t have the same energy – they are detuned) 

 
 
The object of this problem is to understand the effects of detuning on the temporal dynamics and also get 
some practice with Schrodinger and Heisenberg pictures.  
 

a) Find the energy eigenvalues of the hamiltonian Ĥ  in terms of the parameters U,,, 12  .  

b) Fine the energy eigenvectors of the hamiltonian Ĥ  in terms of the vectors  1e  and 2e . 

 
Suppose the quantum state at time t=0 is given as   10 et  .  

c) Find   2
1 te   using the Schrodinger picture of time evolution.  

d) Without doing any major computation, and using your result from part (c), find   2
2 te  . 

e) What happens to the temporal dynamics when the energy level detuning is very large? 
 
Again, suppose the quantum state at time t=0 is given as   10 et   

f) Find   2
1 te   using the Heisenberg picture of time evolution. This can be a long and hard problem.  

 
 
Problem 1.5: (Trace operation) 
 
The trace of an operator is defined as,  
 

  k
k

k vAvA ˆˆTrace   

where the vectors kv  are any set of vectors that form a complete set (i.e. 1̂ k
k

k vv  ). In the 

matrix representation, the trace is the sum of the diagonal elements of the matrix representing the 
operator.   

2 

1 
1e

2e Fig. p1.4: Detuned coupled quantum well system 
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a) Show that the trace of an operator does not depend on the basis set chosen to do the computation (i.e. 

  j
j

jk
k

k eAevAvA ˆˆˆTrace  , where je  is some other complete basis set).  

b) Show that      ACBBACCBA ˆˆˆTraceˆˆˆTraceˆˆˆTrace      (cyclic permutation of operators under 
trace) 
 
Problem 1.6: (density operators) 
 
The states  e  and e  are defined as, 

 21
2

1
eee                        21

2

1
eee   

where 1e  and 2e  are energy eigenstates with energies 1  and 2 , respectively. Consider the 

following two sets of quantum states at time t=0: 
 
 
Set A: A large number of identical copies of the state e .  

Set B: A mixture of a large number of states 1e  and 2e  in which the numbers of both the states are 

equal.  
 
 
a) Write down the density matrices Â  and B̂  (in 2x2 matrix representation in which column vectors 









0

1
 and 








1

0
 represent 1e  and 2e , respectively) for states belonging to set A and set B, respectively, 

at time t=0. 
 
b) Suppose somebody gives you a set and you need to determine whether the set given to you is A or B 
by performing measurements. From your knowledge of the dynamics of two level systems can you think 
of measurements that will enable you to distinguish between set A and set B?  
 

(Hint: try measuring the value of the operator K̂  as a function of time, where  eeK̂ . In other 

words, determine the mean value of the operator K̂  as a function of time with respect to the density 
matrices  tÂ  and  tB̂  and see if you get different results.) 
 
c) Now suppose there is a set C which includes a mixture of a large number of states e  and e  in 

which the numbers of both the states are equal. Write down the density matrix  tĈ  for a state 
belonging to the set C. Can you think of any measurements that can distinguish set B from set C?   
 
 


