Quantum Optics for Photonics and Optoelectronics (Farhan Rana, Cornell University)

Chapter 9: Loss in Quantum Optics

9.1 Optical Beam Splitters: An Introduction

Describing photon loss 1n quantum optics 1s not as straight forward as 1n classical optics. In this section,
we will see what happens when an optical beam is attenuated or when it is suffers a loss. The simplest
consistent picture of loss is obtained with an optical beam splitter and the results can be used to model
linear optical losses of any kind.

9.1.1 Classical Description of a Beam Splitter
Suppose a continuous wave optical beam is incident on a beam splitters as shown below,

a; a;

A 4

If the amplitude of the incident beam is &;, and its power is P; (where P; =|a,-|2 ), then the amplitude
and power of the transmitted beam are,
ag =ta,- Pt =|t|2 P,'

and for the reflected beam we have,

a,=ra P, =|r2P,-
A beam splitter is actually a four-port system, with two input and two output ports, as shown below.
a
ai as

ay

A 4

The amplitudes at the output parts are related to the amplitudes at the input parts in the most general way
by the scattering matrix (also called the S-matrix),

L o

The form of the matrix above conserves power and preserves the time reversal symmetry,
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Outgoing power =|ag|” +|ay|*
ey + ragl? 4| r*ay + ag|
[t las|* +|r[? [azf +t7r a" @y +tr* + aqar”
e laaf” + [t o ]* ~tr* arar" ~tr ag’a
= (1t + 1) + ool

:|a1|2 +|82|2 {since |t|2 +|r|2 =1 }

= Incoming power

9.2 Quantum Description of a Beam Splitter
Quantum description of a beam splitter is a little more complicated than the classical description. Suppose
we have a quantum state |1//> of light coming in from the input port 1, as show below,

by (z.t)
by (z,t) ) Zo bs (z.t)
|'/’> Zo z
b zt
4 ( )" 5

We want to see what the beam splitter does to |l//> Looking at quantum states implies working in the

Schrodinger picture. Beam splitters are handled in a simpler way if one works with operators instead.

9.2.1 Beam Splitter in the Heisenberg Picture

In the Figure above, we have four ports coming together at a beam splitter. There are two input ports and
two output ports. For simplicity, the vertical as well as the horizontal axes are labeled with z and the
beam splitter is located zZ =2z, on both axes. The destruction operators for the two input ports are

51 (z,t) and 52 (z,t) , and the operators for the two output ports are 53 (z,t) and 54 (z,1).

The initial state |l//(t = 0)> is coming in on port 1. |l//(t = 0)> can be any “photon packet” created at time

t =0 and localized at z = z4 where z¢ < z, . For example, a single-photon packet would be,
lw(t=0)= [dz' A(z')b" (2'0)|0) =|1),
—o0
where,

T dz|A(z)? =1
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|A(z)|2 is completely localized in the input port and is depicted below. A coherent state packet, again
localized at z =z4 at t =0 would be,
Ofdz' {a(z')5+(z',0)—a*(z')é(z',O) }
|w(t=0)=e~ 10) =[a(2))4
where,

o0
| |05(Z)|2 dz=N, = average number of particles
—00

by (2t
AZ)? or |a(z) 2(20)

b zt
4 )"Z

At z = z,, the relation between the input and output operators for all times f is,

53 (Zo,t) eiﬂozo—ia)ot t r 61 (Zo,t) eiﬁozo—ia)ot

b4 (z0,t) @070t | |1t || by(z,,t) 670!
Since we have judiciously chosen the location of the beam splitter to be z, on both the vertical and the
horizontal axes, the phase factors will cancel out and one is left with the simpler matrix relation,

b3(25.1) { t r} b1(zo.1)
ba(zout) | =1t || ba(zost)

For z > z,, for all time £,

by (z,t)=b3 (2o +(2 - 2,),t)=b3 [zo,t—z‘zo J
"4
g

~ ~ z-z ~ z-z
:>b3(z,t)=tb1(zo,t— O]Jrrbz(zo,t— O}
Vg Vg
One can verify that the commutation relation at the output ports are preserved,
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_Zo}ér(zo,t_ Z—ZOJ:|
Vg Vg
+|f'|2 {BQ(ZOJ_ ﬂ}ﬁ;(zo,t_ ﬂ}:|
Vg Vg
2| n . Z'-z, | 7 z-z
=t [b{zo ~(z-2),t- =2 J b; [zo,t— o J]
Vg Vg
+|r|2 {52 [zo —(z'-z),t- ﬁ}, Bg (zo,t— £7% H
Vg Vg

=|t|2 8(z-2')+ |r|2 5(z-2")

=6(z-2")
Therefore, the matrix relation above for the beam splitter also preserves the commutation relations for the
output ports when they hold for the input ports.

B3(z.1),b5(2 1) = {51(%,

The photon flux operators for all channels are,
Fr(zt)=vy b} (zt)bk(z,t) (k= 1234}
Suppose the incoming quantum state at time t =0 is |l//> where,
[w(t=0)=|¢); ®|0),

Where |¢>1 is the state in port 1, and port 2 is in the vacuum state, This means,

(p(t=0)| Fa(z )|yt = 0))=0
And,
(w(t=0)|A(zb)|v(t=0)
is the average incident flux in port 1 at location z (z < z,) attime ¢ .

9.2.2 Outgoing Photon Flux
We need to find the average photon fluxes in the two output ports at time { that is large enough that the
quantum state has gone past the beam splitter.

We first evaluate, <1//(t =O)|IE3(Z,t)|1//(t=O)> for 2>z, and z-vgyt<z,,
( (t =0)|F3(zt)|w(t =0)
v lw(t =0)|b; (zt)b3(z,t)|w)= vy (w|b; (2o +(2-20),t)b3(2o + (2~ 25),1)|w(t = 0))

:vg<w(t:0)|53+(zo,t—z ZO} (zo,t—z Z°}|y/(t:0)>

Bg[zo,t— Z_ZOJ:tB{zO,t— Z_Zo] +r52[zo,t— Z_ZOJ
Vg Vg Vg

But,

Therefore,
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((t = 0)| F3(z1) |wlt = 0)) = v (w(t = 0) [f*Ef(ZO,t— z;zo]H* 55(201— z—zoﬂ

g g
[tB{zo,t— Z_z°]+r52[zo,t— £~ % H |w(t =0))
Vg Vg
g (5 2t -2 2 -2 22 )

—vglf® (#]b5 (z-vgt0)b, (z-vgt0) 4),

(wIFs(z) |v) =[t" (9] itz —vgto)g), {z-vgt<z,
Similarly, one can show that,
(wlt =0)|Fa(z.t) [y(t =0)) =|r[* (4] F1(z - v4t0) g),

9.2.3 Outgoing Photon Flux Correlations
As in the classical splitter, the noise introduced by the beam splitter can be studied by looking at the
photon flux correlation functions. We first calculate the photon flux correlation function,

(wlt =0)|As(z.t) Fa(z.t2) | p(t = 0)
in the output port 3 for 2>z, and Z-vgt1 <z, and z-vyty <z, .

S Z—7 S Z—27
Fs(zo,tv y OJFs(Zo,tz— V °J|l//(f=0)>

g9 g

=v§<y/(t =0)| {t*b}*(zo,q - Z;z°]+ r*Bé’[zo,h - Z;ZO H

(w(t =0)|Fs(zty)F3(z.t2)|w(t = 0)) = (w(t = 0)

g 9

tbn»](zo,t»]—Z_Zo]+r52[zo,t1—Z_ZOJ:I

i Vg Vg

t*51+ zo,tz—z_zo +r*52+ zo,tz—z_zo
Vg Vg

R |

9

The only non-zero terms are,
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—[)* ((t = 0)|F1(z—vgts,0)F1(z=Vvgts,0)wit = 0))
+v |t| |r|< (t=0 |b+(z v t1)b1(z v t2)b2(z v t10)b (z-vgt.0)|y(t=0)
— [l * (w(t = 0)|Fy(z - vgt1,0)F1(z v gtp 0wt = 0))
+Vg |t| |r| 1<¢5|bJr (z—vgt1,0)b1(z—vgt2,0)|¢>1 2<0|l32(z—vgt1,0)5§(z—vgt2,0)|0>2
— f)* (w(t = 0)F1(2—vgts,0)F1(z—v gt 0)w(t = O))
+Vg |t| |r| (9 |b1+(z—vgt1,0)b1(z—vgz‘2,0|¢>1 Sty —tp)
We have used the fact that,
2<0|52 (z—vgt1,0)5;(z—vgt2,0)|0>2
=,(0| [52 (z-vgt10), B;(z—vgtz,O)]+ b3 (z—vgty0)by (z-vgt;,0)0),

1
= 5(-vg (t1 —12)),(0]0), = ‘/—5(t1 ~ty)
g
Note the final result is,
(wlt = 0)Fs (z.t1)Fs (2t )w(t =) =[f* (4 |Fr(z - vg.t1.00F2(z ~vg 2. 0) g),

2,2 =
A J(glFi(z-vg t1.0)8), St ~t2).
The noise in the photon flux, defined as,
Ay (20)=Fi (2.0) - (Fi(z.1)) k= 1234}
can now be computed for output port 3,

(w(t =0)| AF3(z.t1)AF3(zta Y (t = 0) =|f* (4| AFy(z ~ vt .0)AF (2 v gtn 0) 4),

[ (8| Fr(z—vgti0)g), S(ts —ta)
The first term on the right hand side represents the photon flux noise in the input port 1 attenuated by the
beam splitter. The second term represents the noise added by the beam splitter. Notice that this second
term is non-zero only because of the vacuum fluctuations that come in from the input port 2 of the beam
splitter. Therefore, the noise added by the beam splitter can be understood as due to the interference
between the input signal in port 1 and the vacuum fluctuations entering the beam splitter from the input
port 2. The spectral density of the photon flux noise in port 3 is,

Sar, aR (@ |t| SAF AF, (a))+|r| |t| |(# |/f1(z—vgt1,0)|¢)1

| =7, | r | =1-17, then we get the same result as obtained in the classical analysis,

Sar, ar (@) =1 (1-1) ($|Fi(z=vgt10)4), +n° Sar sk, (@)
Similary, for the output port 4 one obtains,
(w|Falz.t))Fa(z,t2)|v)

=|r* (8| Atz vt 0)Fi(z vyt 0)|¢),

+ |r|2|t|2 1<¢5|131(z —vgt10)4), S(t1—tz)

and



Quantum Optics for Photonics and Optoelectronics (Farhan Rana, Cornell University)

(w(t = 0)|AF4 (z,t1) AF4 (z,t)|w(t = 0))
=|r[* (§|AF1(z—vgt1.0)AF1(z vyt 0)|g),

IR (6 F(z=vgti0)]g), 5(ty ~to).

= Sap, ary (@) =" Sar ok @)+ ({9]Fr(z-vgt1 0)4),

Example of a Continuous Wave Coherent State: Suppose,
[w(t=0))=|¢),®]0),

where |¢> 1 is a continuous wave coherent state,

Idz'{a(z')W(z',O)—a*(z')51<z'.0)}
|4), =€~ 10), =|a(z)>1
and,
PO

2
(2)" =
|a | Vghag

The average photon flux is equal to,
2 P
(w(t=0)|F(z.t)|p(t=0))=—2 for z < z,
ha,
The photon flux noise correlation for the input is,

(w(t = 0)|AF; (z,t1) AFy(z,tp)|w(t = 0)) = h’Z’ Slty-t,)  forz<z,

o

The average output flux in port 3 is,
(w(t = 0)|Fs( tfult = 0) = |t [*1 (glFr(z-vgt.0) ), = |

The noise in the flux in port 3 is,
((t = 0)|AFs(z,t)AF3 (2t w(t = 0)) = [f|* 4 ([ AF1 (2 v 1. 0)AF (2 g t1,0)|6)

%1 (6|Fa(z v t1.0)8), 5(ty ~t)

PO
hog

(w(t =0)|AFs(z,t1)AF3 (2t |w(t =0)) = |t|4(hpo ]5(1‘1 —t2)+|f|2|l‘|2( Fo J5(t1 —t3)
@ ha,

The spectral density of the photon flux noise in port 3 is,

P P
O e[ -2

ho, ho,

SAF3 AF3(60)=|t|4

If we let |t|2 =7, | r |2 =1-17, then we get the result familiar from the classical analysis in the case

when the input had shot noise,

— Po 2
SAF3 AR (0))— 77(1 _U)ha)o +7 SAF1 AFy (0))
Po 2 Po Po
n(1-mn) hog 7 hog n hoog
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We see that when the input has shot noise the output also has shot noise.

Example of a Coherent State Packet: Suppose,
w(t=0) =|¢),®[0), ®[0); ®|0), =[4), ®|0),
where,
Taz{a(2)b(2.0)- o (2)By(2.0)]
|#) =6 0); =|al2),
and,

o0
Idz’|0¢(z')|2 = N, = average number of photons in the packet
—0o0

by (z,t)
la(2)”

by (z,t
4(Z )"Z

The photon number operator for packets at location Z is,
Ni(z)= [dtE(zt)

We have, -
(8IN4(2) ), =No forz < z,
(pANZ(z)4), =N, forz<z,

Also, since,

~ 2 ~ zZ>2Z
(w(t=0)Fs(zt)wlt=0) =1, {¢|Fr(z-vgtO)g), {Z_Vgt ;’ZO
One can integrate over time { from Z” %0 to +o to get the average photon number in the transmitted
4
g

packet in port 3,
(w(t = 0N (2)wlt = 0)) = [t* (g _OFF} (z-vgt0)dt|4),

Vg
=[t%1(g| TdzFy(z0)|g),

Z
~ % Tdz a(z)? = |t N,
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As expected, one losses (1—|t|2)NO photons in the splitter. What about fluctuations in the photon

number of the output packet in port 3?

(w(t =N (2w (t=0) = (u(t=0)| [at; Jdt, Fa(zti)Fs(zt2)ult=0)

z-z, z-Z,

Vg Vg
4 ~ ~
© © (P F(z=Vat1,0)F(z—-Vv,t,0) ¢
— J‘dt1 J‘ dt2 || 12< |21 A g1 1 92 | >1
2725 27z, |+ |77 (@|Fi(z - vgt1.0)|¢), 5t — t2)
Vg Vg

(w(t = 0)|Ns2(2)w(t = 0) =|t|* No (1+ No )+ |r[*[{|* N,
Let,
1 =7
[r[*=1-n
then,
(w(t = 0)AN3 (2)|w(t = 0)) = n(1-7No +1n*Noy =17 N
The fluctuation in the photon number in the transmitted packet is also equal to the mean photon number.
The properties of both continuous wave coherent states and coherent state packets subjected to loss from

the beam splitter point to the fact that the output states are also continuous wave coherent states and
coherent state packets, respectively. This property will be proven next.

9.2.4 Beam Splitter in the Schrodinger Picture
Example of a Coherent State Packet: Suppose,

|w(t=0))=|¢), ®|0), ®|0), ®[0), =[¢) ®|0),
where,
Taz{a(2)b(2.0)- o (2)6y(2.0)]
|4), =€~ 10), :|“(Z)>1
and,

ZO
Idz’|oe(z')|2 = N, = average number of photons in the packet
—o0

by (z,t)
(2
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We want to find the state |l//(t )> at a later time ¢ which is large enough such that the packet has by then

gone past the beam splitter. Recall that,

H

~

by (z,t)e
We get,

Ly

—e I g

~ Z9 . " o
iy o Pazla@b 20y ot @Bz 0

:e he—oo

. i—t .
“loot _ g 1 b, (20) e

ofdz’{a(z')51+(z',0)—

—iﬂt
h

a*<z')61<z',0)}
0)

He il

e e " |0)

Ojodz’{a(z')51+(z',—t)e_ia’°t —a*(z')&(z',—t)e’”of}

=e®

—00

=e

0 iont o
[dz'{ a(Z')e™"0'byt| zo,~t—

0)

}_a*(z,)eiwot&[zo,_t_l—zo
Vg

'
z'-z,

Vg

]}|o>

The infinite vacuum energy has been ignored above. The beam splitter relation,

53 (ZO , t) ei,Bozo —ia)ot
b4 (ZO ’ t) eiﬂozo —iC()Ot

H

gives,

t
r*

51 (ZO , t) eiﬂozo —i(()ot

r
*:| léz(zo’t) eiﬂozo—ia)ot

t

|

51(20,1‘):1‘*53(20,1‘)—1’ 54(Zo,f)

Therefore,

B a(z)e iwot[t%+(zo,—t— -2y
v
‘[dzf g
—00
=e

Ofdz'{a(z’)e"'wot
|y (t)=e~

We can write the above result as,

th*

@ —iwopt f + z
[dz{ a(z)e”" 0 byt zg,~t—

-Zo

}—a*(z’)eiwotlﬁ [zo —t-2"%
v

-

—a*(z’)eia’ot[t*@[zo,—t—

Vg

]}|o>

J—r*ﬁf{zo,—t—z\:z"
g9

Z—ZoJ_r B4+[ZO,—t— -
Vg

(z'+vgt,0)—r *by* (z'+vgt,0)]—a* (2)e'0! [t *b3 (z'+vgt,0)—r byt (z'+vgt,0)]}

10
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Ojodz’{ a(z')e—ia)ot t53+(z'+vgt,0)—r*54+(z'+vgt,0)] [ ]}

<o —a"(2)e" 0t t* by (2 +vgt,0)-r by* (2+vyt0

|y/(t)>=e a (Z)e b3(z+vg ) r by (z+vg ) |0>3 ®|O>4
Ojodz’ ta(z')e_iw°t53+(z'+vgt,0)—t*a*(z')eiw0t53(z'+vgt,0)}

—e [0)3 ®

© i ~ ] h
fdz’{‘r*a(z')e"“’otbf(z'+Vgt,0)+ra*(Z')e'wotb4 (Z'+Vgt’0)}
9,

ojot:lz’{toz(z’—vgt)e*i“’otli{r (z,0)-t* a*(z’—vgt)eiwot[)g, (z',O)}
=g~ 0), ®

Ofdz’{—r * oc(z'—vgt)ef"“’otﬁ{r (z,0)+ ra*(z'—vgt)eiw°t54 (z',O)}
e 10)4

= ‘t Ol(Z _ Vgtk—ia)ot>3 ® ‘ _r* a(z _ Vgtk—fa)ot>4

The above result shows that the state at a later time t is a coherent state packet in the output port 3
and a coherent state packet in the output port 4. The amplitude of the transmitted packet is scaled by the
transmission coefficient and the amplitude of the reflected packet is scaled by the reflection coefficient.
Coherent states thus remain coherent states when undergoing optical loss.

Example of A Number State Packet: Most quantum optical states, with the exception of coherent
states, get entangled between the two output ports in a beam splitter.

ey by (z,t)

by (z,t
4(Z )"Z

This is best illustrated by considering a single photon packet incident from input port 1,
w(t=0)= Jaz' Az)by" (2,0)[0) =|1),

where, -
1 dz A(z) =1

We want to find the state |1//(t)> at a later time ¢ which is large enough such that the packet has by then

gone past the beam splitter.

11



Quantum Optics for Photonics and Optoelectronics (Farhan Rana, Cornell University)

i o0 "
w(t)=e " |p(t=0)=e " [dz' A(z')by" (z'0)|0)
H H, H
—i—t o “ +i—t —i—t
=e " [dz'A(z)b;"(z0)e " e 7 |0)

e —lwpt  + e —liwpt f + z'-z
= [dz' A(Z')e "'by" (Z'~1)[0) = | dz' A(Z')e '™ by"| zo,-t - —2|0)
"4
—»o -0 g9
The vacuum energy has been ignored above. The beam splitter relation,

53 (Zo,t) eiﬂozo—ia)ot t r 51 (Zo,t) eiﬂozo—ia)ot
ba(20,) oo 100t || 1" 1" ]| By (z,1) e/oo i

gives,
b1(zo,t) =t* b3(zo,t) =1 b4(z,,t)
Therefore,
0 . ~ _
with= [ dz' Az)e ™! bﬁ(zo - ]|0>
—00 g
[e'e) . . "_ n _
= [ dz' A(Z)e Tt | thy*| 2ot - Z20 | r * hyt| zg -t - 2222 | ||0)
. Vg Vg

= Ofdz' A(z')e '@t [t53+ (z'+vgt,0)— r*by* (Z'+Vgt,0)]|0>3 ®|0>4
[ee]

= t{ Tdz Az —vgtie @b (z',O)} |0), ®|0), —r* {

—00

=t|1>3 ®|0>4 —r*|0>3 ®|1>4
The quantum state at a later time is a linear superposition of the photon in the output port 3 (with

OEOdz' A(Z' —vgt)e "' b; (z',O)} 0), ®|0),

vacuum in the output port 4) with a probability |t 2 , and the photon in the output port 4 (with

vacuum in the output port 3) with a probability |r|2. The final state is in fact an entangled state.

Note that coherent state packets do not get entangled between the two output ports, as shown in
the previous example.

9.2.5 Some Comments on Loss in Quantum Optics
In the previous Sections, we saw that whenever a beam suffers loss and is attenuated noise also gets
added to the beam in the process. For example, the beam splitter relation,

53 (Zo,t) eiﬂozo —ia)ot t r 51 (Zo,t) eiﬂozo—iwot
by(zo,t) "% 10! | [ =17 1" || by(zo,1) oo it
implied that for a signal coming in on port 1, the signal leaving on port 3 is given by,
b3(z,,t) = th1(z,,t) + rba(z,,t)
The last term on the left hand side represented noise due to the vacuum fluctuations going into the output

port 3 from the input port 2. We also saw that the addition of the noise was necessary in order to the
preserve the operator commutation relations at the output. These observations suggest that a quantum

12
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mechanically consistent model for loss in quantum optics can be developed that is independent of the
microscopic details of the loss mechanism by ensuring the preservation of commutation relations. In the
next Section, we discuss such a model.

9.3 Quantum Description of Loss for Propagating States
For a non-dispersive and a non-interacting waveguide (or fiber of free-space) we derived the travelling
wave equation,

i+L§ b(z,t)=0

0z vg ot
Suppose the propagation is taking place in a medium that has loss. In order to model the loss, we can add
a term on the right hand side,

o 10 |p A
(§+E5Jb(z,t)=—a b(zt)

where 2 is the power loss coefficient (units: per unit length). The above equation, although classically

correct, is quantum mechanically inconsistent. We know that,

b(z.t).b(z.1)] =5(z-2)
Let’s see if the travelling wave equation with loss preserves the commutation relation. Define a change of
variables,
Z'=z-vg4t
We get,
i+ii B(Z,t) = i25(2’ +vgtt)=-a 5(2’ +vgt,t)
0z vg ot vg ot

-« Vgt

:>5(z’+vgt,t)=5(z',0)e

=b(zt)=b(z-vyt0)e *"9
We can now find the equal-time commutation relation at time ¢,
b(zt),b" (z',t)] = [5(2 ~vgt0),b" (2 -v4t0)
Ifattime t =0,
(2t =0).b(z,t =0)| =5(z-2)
then at time t,
b(zt),b* (z',t)]: 5(z-2)e
We see that the commutation relation decays and is not preserved.

—2a vt
e g

—2a Vgt-

Irrespective of the microscopic details of the loss mechanism, noise is introduced during propagation in

any lossy medium. To model this noise, we introduce a quantum Langevin noise operator S (z,t) as
follows,

0z Vg ot

We impose the following commutation relation on the noise operator,

l:iJriﬁ};(z,t): _aB(z,t)+\/Z§(z,t)

13



Quantum Optics for Photonics and Optoelectronics (Farhan Rana, Cornell University)

[s“(z, t),S*(z, t')] =8(z-2")o(t—-t")
The noise operators have zero mean values,
($zt) = <s“+(z,t)> 0
The averaging above is with respect to the density operator describing the noise sources. Solution is,

“ R _ t _ EFRER
B(zt)=b(z-vgt0)e “ 9 sy VA [dtye 9 T Sz vy (t-ty), 1)
0

The commutation relation is,

(1_ —2avgt)
[5(2,t),5+(z’,t)]: o(z—- z’)e_za Vot | vé As(z-2)~—m-2
2c Vg

The commutation relation is preserved if A = 2a/ Vg . Thus, the correct quantum equation in the presence

of loss is,

o 10|z : 2a &
{EJrEE]b(z,t):—ab(z,t)Jr\/%S(z,t)

In most cases, one imposes additional conditions on the Langevin noise sources that accompany loss,
<s“+(z,t)s“(z’,t')> ~0
<§(z,t) §+(z’,t’)>= S(z-2')8(t 1)

These conditions ensure that the average photon flux obeys,
(F(zt)=(F(z- vgt,0)>e‘2“ Vgt

as one might intuitively expect.

Comment on Averages: In order to make the averaging procedure in the presence of Langevin sources
explicit, suppose the initial state of the radiation mode is |¢(t = O)> and the corresponding density
operator is /33( = 0) = |¢(t = 0)><¢(t = 0)| Suppose the initial state describing the “reservoir” associated

with the loss is pg (l‘ = 0). The reservoir represents those degrees of freedom into which the energy lost

from the radiation mode is going. The reservoir degrees of freedom are also responsible for injecting
noise into the radiation mode. The state of the complete system is then given by the density operator,

plt=0)=ps(t=0)® pr(t=0).
All averaging, in the Heisenberg picture, is performed with respect to the density operator above.

9.4 Quantum Theory of Loss for Cavity Modes

Consider a cavity, as shown below.

Cavity

We assume that it contains only a single radiation mode and the Hamiltonian is,

14
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H=hao, (474 +%)

The creation and destruction obey the equal-time commutation relation,

act).a* (1)) =1
The time development is given by the Heisenberg equations,
dal(t R
% — iwg 4lt)
da*(t) . 4
=iwga" (t
dt wo a” (t)
It follows that
d ~ d A+ ~
—n(t)=—1la" (t)a(t)|=0
% i) =4 |6+ 0ac)
~ ii(t)= /(0)

Now we assume that the cavity contains loss. In the presence of loss, irrespective of the microscopic
details of the loss mechanism, the average photon number should decrease as,

(ii(t)) = (A(0))e !

To model loss, we try by adding decay terms to the operator equations,

dz_gt) =—iwm, a(t) - ya(t)
dé;t(t) = iwy &* (t)—ya* (t)
Now,
ailt) . -
e 2y n(t)
and,

A(t)=A(0)e 2!

= (i) = (A(0))e 2 ¢
The creation and destruction operators at time { are,
a(t) =a(t = 0)el 7)1

a*(t)=a(t =0)eli @071
It follows that the equal-time commutation relation at timef is,

a0 ()] late 0} (¢ ~0) o2
Ifattime t =0,

st = 0),a%(t = 0)] =1
then at time {,

la(t)a* (¢t)]= e 2!
The commutation relation decays with time. Therefore, our method of introducing loss is quantum
mechanically inconsistent. Equal-time commutation relations are laws of nature. If they are found to be
violated, it means that one has made a mistake. To model loss correctly, we need to introduce the noise
that comes with the loss. We modify the creation and destruction operator equations and introduce
Langevin noise sources,
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%gt) = —iw, (t) - 7a(t) + VA S(t)

da™ (t)
dt

é(t) and S* (t ) are Langevin noise operators and the only requirements we impose on them is that they

—im, &t (t)— 78" (t)+A S*(t)

satisfy,

5,87 (1)] =st-t)
() = <§+(t)> ~0
Solving the Equations above one obtains,
a(t)=a(t = 0)et o)t 1 JA[! atr el o0 7N
5* (t) _4t (t _ O)e(”wo—V)t n \/ZIZ dt’ e(i @p —7)(1‘—1")§+ (t’)
The equal-time commutation relation is,
a(6)a* ()] =l =0)ar (=02t + Al dti ]! dt el @o=r)t-tt) glimo—7)(t-t2) 54, _¢,)

=e 7ty Al dtye™ % (t-t1)
o

—e 2t +i(1—e_27t)
2y

If A=2y, then lé(t),é+(t)J=1 for all time t. Therefore, in the presence of loss the correct operator
equations are,

98— it ) + 27 $10)
da™ (t)

=iwd*(t)- 7" (t)+ 2y S*(t)

where,

[é(t), é*(t')] =5(t-t)

(Sw)=($*@®)-0
Suppose we want to find the average photon number at time f . We have,

(t) = flt = 0)e %t + 2y [Ldty ! el o-7Nt-t) g lo-7Xt-tg+(,)S (¢,
The average photon number is,

() =T { pt=0)i(t) } { plt=0)=ps(t=0)® prlt=0)
In order to obtain the intuitive result,

((t) = (A(0))e 2" ¢
one must impose the following additional condition on the noise sources,

<§+(t)§(t')> 0

The relation above and the commutation relation for the noise sources implies that we must also
have,

16



Quantum Optics for Photonics and Optoelectronics (Farhan Rana, Cornell University)
<§(t) é*(t')>=5(t —t)

9.5 A Wavequide Model for Loss in Cavities

Consider a cavity connected to a waveguide, as shown below.

Cavity Waveguide

—— br(zt)

BL (z, t) «——

»
»

z=0 z

We assume that the cavity has a single radiation mode. The Hamiltonian for the radiation mode of a
closed cavity (i.e. cavity with no waveguide attached) is,

H, = hao, (é*a +%j

In the presence of the waveguide, the Hamiltonian must include the coupling between the cavity mode
and the propagating mode inside the waveguide. The details of this coupling, as you will see, will turn out
to be unimportant. We assume that in the presence of the waveguide, the cavity mode experiences loss
since energy is transferred from the cavity mode to the propagating mode inside the waveguide. In other
words, the energy leaks out from the cavity into the waveguide. We can model this loss by adding decay

terms to the Heisenberg equations of the creation and destruction operators, &* (t) and &(t), respectively,

%y) — i &(t)— yA(t)

dé;t(t) iy 8" (1)~ 78" (1)

As discussed earlier, the loss must be accompanied by noise which can be modeled by introducing
Langevin noise sources,

%gt) = —iwa(t) - 7a(t) + 27 S(t)
dé(;t(t) — o8 (1)~ 7 (1) + 27 $7(¢)

The above equations are adequate for describing the cavity loss due to coupling with the waveguide.
However, here we will discuss a microscopic model for the cavity loss due to coupling to the waveguide
with the aim to clarify the origin of the noise sources.

As a result of the coupling between the cavity and the waveguide, photons inside the cavity can leak into
the waveguide. The operators by (z,t) and bg(z,t) stand for the waveguide modes moving in the left and
right directions, respectively.
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Ap
_ﬂo+7d_ﬂ b‘ ei(ﬂ—ﬂo)z

» _ —i[o(B)-o(po)]t
bL(Z’t)_L .[ A o (ﬂ) \/Z e
—ﬂo—7
B A =
a2 dp P Ly g
bR(Zﬂ‘)—Lﬂ IA/;Z b(ﬂ)T e
)

They satisfy the following equal-space and equal-time commutation relations,
b, (2,05, (2. 0)e6 (2 - 2)=[br (2 £) bR (2.0)]
b, (2,05, * ()] Ls(e-1)- e (z.0) 55" (2.t
g

Since we are interested only in those waveguide modes whose frequency is close to the cavity frequency,
we choose f, such that a)( o ) = w, = cavity frequency. The coupling between the cavity and the

waveguide is taken into account by the following equation,

%S.t) :(_ia)o - ]/)é(t) + kBL (z = O,t)e—ia)ot

The last term describes the coupling of the left-moving fields into the cavity. The g ol

term has been
added to make a Heisenberg operator out of the slowly varying envelope part BL(Z =0,t). The coupling
constant k remains to be determined. The corresponding equation for the creation operator is,

- ) ,
daTt(t) =(iw —y)a" (t)+ k b/ (z=0,t) '@l

Comparing Equations (3) and (4) with (1) and (2), we see that they are equivalent provided the value of
the coupling constant Kk is /2y v . Therefore, the phenomenological Langevin noise sources are related

to the waveguide operators as,
S(t)=Jvg bL(z=0,t)e "™
$*(t)=Jvg b/ (z=0,t) !

One can verify that all commutation relations and averages involving operators é(t) and §+(t) are

satisfied with the above definitions. The noise that accompanies photon loss into the waveguide is due to
the vacuum fluctuations coming into the cavity from the waveguide.

The final remaining question is how to describe the photons leaking out into the waveguide and moving
to the right. We know that the average photon number inside the cavity decays as,

diat) .
——+=-2y(n\t

" y{(A(t))

So the average photon flux in the waveguide at Z=0 going in the right direction must equal the rate of
photon loss in the cavity,

(Frz=0,t) = v, <BR+(z —0,t)bp(z = 0,t)> — 2y (A(t))

In order to obtain the above relation, one might conjecture that,
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br(z=0,t)e ! = 2r a(t)
Vg

—iwpt

The above relation is incorrect. BR (z=0,t)e must also include the reflected part of the left-moving

field (i.e. the part that does not make into the cavity). So we try,

br(z=0,t)e "t = | 27 a(t)+c by (z=0,t)e '@t
"4
g

The parameter ¢ needs to be determined. Solving the Equation,
dé(t) _ . ~ o _ —fjwnt
7—(-/&)0 —]/)a(t)+d2}/ Vg bl_(Z—O,t)e 0

one obtains,
) . t A
a(t)=ael o)y oy v e M0t dtre™” 1) § (z=0,1')
0
After substituting the above result in the expression for 5R (z=0, t)e_iwot we get,

i , . ot A -
br (z=0,t)e ot = 5—7 deltioo=1)t Lo, g7iwot( gpre=r (t=1) b (7 _q 1)
g9 0

+cby (z=0,t)e !

From the above expression, the equal-space commutation relation for BR (z=0,t) is,

[BR (Z = 0,t1),5;—\; (Z = O,t2 )] :ﬂ e_}/(t1+t2) +Q( 9_7/‘ t—to ‘ _e_7(t1+t2) j+£ 9_7/‘ t—to ‘
Vg Vg Vg
2
+ 2 5(ty ~ty)
Vg
The left hand side must equal & (t1 —t, )/ Vg - Therefore, ¢ must equal —1. Finally, we can write the

two equations describing the coupling between the waveguide and the cavity as,

dal(t . ~ » =i
dg ) =(~iwo — 7)a(t) + 27 v by (z=0,t)e !

br(z=0,t)e ! = | 2r a(t)-by (z=0,t)e '@t
"4
g

The corresponding equations for the adjoints are,

oy ) ,

dadt(t) =(iwy —y)a* (t)+.[2y vg b (z= 0,t)e'!

bi(z=0,t)e" ! = 27 a*(t)-b; (z=0,t)e"!
Vg

Note that these equations depend on only one parameter — the loss rate y . The value of y is determined
by the details of the coupling between the cavity and the waveguide.

In general, a cavity can have more than one source of loss, e.g. material loss inside the cavity, radiation

loss, waveguide loss. For each distinct loss mechanism, one can introduce an independent Langevin noise
source.
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