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Chapter 9: Loss in Quantum Optics 
 
 

9.1 Optical Beam Splitters: An Introduction 
Describing photon loss in quantum optics is not as straight forward as in classical optics. In this section, 
we will see what happens when an optical beam is attenuated or when it is suffers a loss. The simplest 
consistent picture of loss is obtained with an optical beam splitter and the results can be used to model 
linear optical losses of any kind.  
 
9.1.1 Classical Description of a Beam Splitter 
Suppose a continuous wave optical beam is incident on a beam splitters as shown below, 

 

If the amplitude of the incident beam is ia , and its power is iP  (where 
2

ii aP  ), then the amplitude 

and power of the transmitted beam are, 

 itit PtPata
2  

and for the reflected beam we have, 

 irir PrPara
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A beam splitter is actually a four-port system, with two input and two output ports, as shown below. 

 
The amplitudes at the output parts are related to the amplitudes at the input parts in the most general way 
by the scattering matrix (also called the S-matrix), 
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The form of the matrix above conserves power and preserves the time reversal symmetry, 
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9.2 Quantum Description of a Beam Splitter 
Quantum description of a beam splitter is a little more complicated than the classical description. Suppose 
we have a quantum state   of light coming in from the input port 1, as show below, 

 
We want to see what the beam splitter does to  . Looking at quantum states implies working in the 

Schrodinger picture. Beam splitters are handled in a simpler way if one works with operators instead.  
 
9.2.1 Beam Splitter in the Heisenberg Picture 
In the Figure above, we have four ports coming together at a beam splitter. There are two input ports and 
two output ports. For simplicity, the vertical as well as the horizontal axes are labeled with z  and the 
beam splitter is located ozz   on both axes. The destruction operators for the two input ports are 

),(ˆ
1 tzb and ),(ˆ

2 tzb , and the operators for the two output ports are ),(ˆ
3 tzb  and ),(ˆ

4 tzb .  
 
The initial state  0t  is coming in on port 1.  0t  can be any “photon packet” created at time 

0t  and localized at 1zz   where ozz 1 . For example, a single-photon packet would be, 
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2
)(zA is completely localized in the input port and is depicted below. A coherent state packet, again 

localized at 1zz   at 0t  would be, 
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At ozz  , the relation between the input and output operators for all times t  is, 
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Since we have judiciously chosen the location of the beam splitter to be oz  on both the vertical and the 
horizontal axes, the phase factors will cancel out and one is left with the simpler matrix relation, 
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For ozz  , for all time t , 
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One can verify that the commutation relation at the output ports are preserved, 
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Therefore, the matrix relation above for the beam splitter also preserves the commutation relations for the 
output ports when they hold for the input ports.  
 
The photon flux operators for all channels are, 
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Suppose the incoming quantum state at time 0t  is   where, 
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is the average incident flux in port 1 at location )( ozzz   at time t . 

 
9.2.2 Outgoing Photon Flux 
We need to find the average photon fluxes in the two output ports at time t  that is large enough that the 
quantum state has gone past the beam splitter.  
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Similarly, one can show that, 
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9.2.3 Outgoing Photon Flux Correlations 
As in the classical splitter, the noise introduced by the beam splitter can be studied by looking at the 
photon flux correlation functions. We first calculate the photon flux correlation function,  
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The only non-zero terms are, 
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We have used the fact that, 
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Note the final result is, 
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The noise in the photon flux, defined as, 
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The first term on the right hand side represents the photon flux noise in the input port 1 attenuated by the 
beam splitter. The second term represents the noise added by the beam splitter. Notice that this second 
term is non-zero only because of the vacuum fluctuations that come in from the input port 2 of the beam 
splitter. Therefore, the noise added by the beam splitter can be understood as due to the interference 
between the input signal in port 1 and the vacuum fluctuations entering the beam splitter from the input 
port 2. The spectral density of the photon flux noise in port 3 is, 
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Similary, for the output port 4 one obtains, 
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Example of a Continuous Wave Coherent State: Suppose, 
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The average photon flux is equal to, 
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We see that when the input has shot noise the output also has shot noise.  
 
Example of a Coherent State Packet: Suppose, 
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As expected, one losses oNt 




  2
1  photons in the splitter. What about fluctuations in the photon 

number of the output packet in port 3? 
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The fluctuation in the photon number in the transmitted packet is also equal to the mean photon number. 
The properties of both continuous wave coherent states and coherent state packets subjected to loss from 
the beam splitter point to the fact that the output states are also continuous wave coherent states and 
coherent state packets, respectively. This property will be proven next.  
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We want to find the state  t  at a later time t  which is large enough such that the packet has by then 

gone past the beam splitter. Recall that, 
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The infinite vacuum energy has been ignored above. The beam splitter relation, 

 









































tizi
o

tizi
o

tizi
o

tizi
o

ooo

ooo

ooo

ooo

etzb

etzb
tr

rt

etzb

etzb








),(ˆ
),(ˆ

),(

),(ˆ

2

1
**

4

3  

gives, 

 ),(ˆ),(ˆ*),(ˆ
431 tzbrtzbttzb ooo   

Therefore, 

 

0

0

'
,ˆ'

,ˆ*)(                                                                 

'
,ˆ*

'
,ˆ)(

'
,ˆ)(

'
,ˆ)(

43

43

11
















































 










 























 










 


 






















 










 
 
















g

o
o

g

o
o

toi

g

o
o

g

o
o

toi

g

o
o

toi

g

o
o

toi

v

zz
tzbr

v

zz
tzbtez

v

zz
tzbr

v

zz
tzbtez

zd

v

zz
tzbez

v

zz
tzbezzd

e

et















 

 
          

0
0,'ˆ0,'ˆ*)(0,'ˆ*0,'ˆ)( 4343 tvzbrtvzbteztvzbrtvzbtezzd gg

toi
gg

toi

et
  



 
  

We can write the above result as, 
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The above result shows that the state at a later time t  is a coherent state packet in the output port 3 
and a coherent state packet in the output port 4. The amplitude of the transmitted packet is scaled by the 
transmission coefficient and the amplitude of the reflected packet is scaled by the reflection coefficient. 
Coherent states thus remain coherent states when undergoing optical loss.   
 
Example of A Number State Packet: Most quantum optical states, with the exception of coherent 
states, get entangled between the two output ports in a beam splitter. 

 
This is best illustrated by considering a single photon packet incident from input port 1,  
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The vacuum energy has been ignored above. The beam splitter relation, 

 









































tizi
o

tizi
o

tizi
o

tizi
o

ooo

ooo

ooo

ooo

etzb

etzb
tr

rt

etzb

etzb








),(ˆ
),(ˆ

),(

),(ˆ

2

1
**

4

3  

gives, 

 ),(ˆ),(ˆ*),(ˆ
431 tzbrtzbttzb ooo   

Therefore, 

 

    
   

4343

434433

4343

43

1

10*01

000,'ˆ)('*000,'ˆ)('

000,'ˆ*0,'ˆ)('

0
'

,ˆ*
'

,ˆ)('

0
'

,ˆ)('











 








 

 























 










 


 








 






























rt

zbetvzAdzrzbetvzAdzt

tvzbrtvzbtezAdz

v

zz
tzbr

v

zz
tzbtezAdz

v

zz
tzbezAdzt

ti
g

ti
g

gg
ti

g

o
o

g

o
o

ti

g

o
o

ti

oo

o

o

o









 

The quantum state at a later time is a linear superposition of the photon in the output port 3 (with 

vacuum in the output port 4) with a probability 2
t , and the photon in the output port 4 (with 

vacuum in the output port 3) with a probability 2
r . The final state is in fact an entangled state. 

Note that coherent state packets do not get entangled between the two output ports, as shown in 
the previous example.  
 
9.2.5 Some Comments on Loss in Quantum Optics 
In the previous Sections, we saw that whenever a beam suffers loss and is attenuated noise also gets 
added to the beam in the process. For example, the beam splitter relation,   

 









































tizi
o

tizi
o

tizi
o

tizi
o

ooo

ooo

ooo

ooo

etzb

etzb
tr

rt

etzb

etzb








),(ˆ
),(ˆ

),(

),(ˆ

2

1
**

4

3  

implied that for a signal coming in on port 1, the signal leaving on port 3 is given by, 
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The last term on the left hand side represented noise due to the vacuum fluctuations going into the output 
port 3 from the input port 2. We also saw that the addition of the noise was necessary in order to the 
preserve the operator commutation relations at the output. These observations suggest that a quantum 
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mechanically consistent model for loss in quantum optics can be developed that is independent of the 
microscopic details of the loss mechanism by ensuring the preservation of commutation relations. In the 
next Section, we discuss such a model.  
 
 

9.3 Quantum Description of Loss for Propagating States 
For a non-dispersive and a non-interacting waveguide (or fiber of free-space) we derived the travelling 
wave equation, 

 0),(ˆ1






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

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






tzb
tvz g

 

Suppose the propagation is taking place in a medium that has loss. In order to model the loss, we can add 
a term on the right hand side, 

 ),(ˆ),(ˆ1
tzbtzb

tvz g

















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where 2  is the power loss coefficient (units: per unit length). The above equation, although classically 
correct, is quantum mechanically inconsistent. We know that,   

   )(),(ˆ),,(ˆ zztzbtzb    
Let’s see if the travelling wave equation with loss preserves the commutation relation. Define a change of 
variables, 
 tvzz g  

We get, 
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We can now find the equal-time commutation relation at time t , 

     tv
gg

getvzbtvzbtzbtzb
2

)0,(ˆ),0,(ˆ),(ˆ),,(ˆ    

If at time 0t , 

   )()0,(ˆ),0,(ˆ zztzbtzb    

then at time t , 

   .)(),(ˆ),,(ˆ 2 tvgezztzbtzb
    

We see that the commutation relation decays and is not preserved.  
 
Irrespective of the microscopic details of the loss mechanism, noise is introduced during propagation in 

any lossy medium. To model this noise, we introduce a quantum Langevin noise operator ),(ˆ tzS  as 
follows, 

 ),(ˆ),(ˆ),(ˆ1
tzSAtzbtzb

tvz g











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
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

   

We impose the following commutation relation on the noise operator, 
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   )()(),(ˆ),,(ˆ ttzztzStzS    
The noise operators have zero mean values, 

 0),(ˆ),(ˆ   tzStzS  

The averaging above is with respect to the density operator describing the noise sources. Solution is, 
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The commutation relation is, 

  
g

tv

g
tv

v

e
zzAvezztzbtzb

g

g







2

1
)()(),(ˆ),,(ˆ

2

22





 





  

The commutation relation is preserved if gvA 2 . Thus, the correct quantum equation in the presence 

of loss is, 
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In most cases, one imposes additional conditions on the Langevin noise sources that accompany loss, 

 
)()(),(ˆ),(ˆ
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These conditions ensure that the average photon flux obeys, 

 
tv

g
getvzFtzF

2
)0,(ˆ),(ˆ 

  

as one might intuitively expect.  
 
Comment on Averages: In order to make the averaging procedure in the presence of Langevin sources 
explicit, suppose the initial state of the radiation mode is  0t  and the corresponding density 

operator is      000ˆ  tttS  . Suppose the initial state describing the “reservoir” associated 

with the loss is  0ˆ tR . The reservoir represents those degrees of freedom into which the energy lost 
from the radiation mode is going. The reservoir degrees of freedom are also responsible for injecting 
noise into the radiation mode. The state of the complete system is then given by the density operator, 
       0ˆ0ˆ0ˆ  ttt RS  .  
All averaging, in the Heisenberg picture, is performed with respect to the density operator above. 
 
 

9.4 Quantum Theory of Loss for Cavity Modes 
Consider a cavity, as shown below.  

 
We assume that it contains only a single radiation mode and the Hamiltonian is,  

Cavity 
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2

1ˆˆ(ˆ  aaH o  

The creation and destruction obey the equal-time commutation relation, 

   1)(ˆ),(â  tat  
The time development is given by the Heisenberg equations, 
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It follows that 
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   0ˆˆ

0)(ˆ)(ˆ)(ˆ
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dt

d
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 
 

Now we assume that the cavity contains loss. In the presence of loss, irrespective of the microscopic 
details of the loss mechanism, the average photon number should decrease as, 

      tentn 20ˆˆ   

To model loss, we try by adding decay terms to the operator equations, 
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Now, 
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and, 
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The creation and destruction operators at time t  are, 

 
     

      ti

ti

o

o

etata

etata
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
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0ˆˆ
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It follows that the equal-time commutation relation at time t is, 

           tetatatata 20ˆ,0ˆˆ,ˆ    

If at time 0t , 

   1)0(ˆ),0(â   tat  

then at time t , 

      tetata 2ˆ,ˆ    
The commutation relation decays with time. Therefore, our method of introducing loss is quantum 
mechanically inconsistent. Equal-time commutation relations are laws of nature. If they are found to be 
violated, it means that one has made a mistake. To model loss correctly, we need to introduce the noise 
that comes with the loss. We modify the creation and destruction operator equations and introduce 
Langevin noise sources, 
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   

   tSAtatai
dt
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 tŜ  and  tSˆ  are Langevin noise operators and the only requirements we impose on them is that they 
satisfy, 

       ''ˆ,ˆ tttStS    

 0)(ˆ)(ˆ   tStS  

Solving the Equations above one obtains, 
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The equal-time commutation relation is, 
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If 2A , then      1ˆ,ˆ  tata  for all time t . Therefore, in the presence of loss the correct operator 
equations are, 

 

   

   tStatai
dt

tad

tStatai
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tad





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ˆ2)(ˆ)(ˆ
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ˆ2)(ˆ)(ˆ
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
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where, 

       ''ˆ,ˆ tttStS    

 0)(ˆ)(ˆ   tStS  

Suppose we want to find the average photon number at time t . We have, 

              1221
2 ˆˆ20ˆˆ 11 tStSeedtdtetntn ttittittt

oo

     

The average photon number is, 
              0ˆ0ˆ0ˆˆ0ˆˆ  ttttntTtn RSr                                       

In order to obtain the intuitive result, 

     tentn 20ˆˆ   

one must impose the following additional condition on the noise sources, 

 0)(ˆ)(ˆ  tStS  

The relation above and the commutation relation for the noise sources implies that we must also 
have, 
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 )()(ˆ)(ˆ tttStS    

 
 

9.5 A Waveguide Model for Loss in Cavities 
Consider a cavity connected to a waveguide, as shown below.  

 
We assume that the cavity has a single radiation mode. The Hamiltonian for the radiation mode of a 
closed cavity (i.e. cavity with no waveguide attached) is, 

 





  

2

1ˆˆ aaH oo   

In the presence of the waveguide, the Hamiltonian must include the coupling between the cavity mode 
and the propagating mode inside the waveguide. The details of this coupling, as you will see, will turn out 
to be unimportant. We assume that in the presence of the waveguide, the cavity mode experiences loss 
since energy is transferred from the cavity mode to the propagating mode inside the waveguide. In other 
words, the energy leaks out from the cavity into the waveguide. We can model this loss by adding decay 

terms to the Heisenberg equations of the creation and destruction operators,  taˆ  and  tâ , respectively, 
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As discussed earlier, the loss must be accompanied by noise which can be modeled by introducing 
Langevin noise sources, 
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The above equations are adequate for describing the cavity loss due to coupling with the waveguide. 
However, here we will discuss a microscopic model for the cavity loss due to coupling to the waveguide 
with the aim to clarify the origin of the noise sources.   
  
As a result of the coupling between the cavity and the waveguide, photons inside the cavity can leak into 

the waveguide. The operators  tzbL ,ˆ  and  tzbR ,ˆ  stand for the waveguide modes moving in the left and 
right directions, respectively. 

Cavity Waveguide 

z z=0 
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They satisfy the following equal-space and equal-time commutation relations, 
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Since we are interested only in those waveguide modes whose frequency is close to the cavity frequency, 
we choose o  such that   frequencycavity  oo  . The coupling between the cavity and the 
waveguide is taken into account by the following equation, 
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oetzbktai

dt

tad   ),0(ˆ)(ˆ)(
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The last term describes the coupling of the left-moving fields into the cavity. The ti oe   term has been 

added to make a Heisenberg operator out of the slowly varying envelope part ),0(ˆ tzbL  . The coupling 
constant k  remains to be determined. The corresponding equation for the creation operator is, 
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Comparing Equations (3) and (4) with (1) and (2), we see that they are equivalent provided the value of 

the coupling constant k  is gv2 . Therefore, the phenomenological Langevin noise sources are related 

to the waveguide operators as, 
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One can verify that all commutation relations and averages involving operators  tŜ  and  tSˆ  are 
satisfied with the above definitions. The noise that accompanies photon loss into the waveguide is due to 
the vacuum fluctuations coming into the cavity from the waveguide.  
 
The final remaining question is how to describe the photons leaking out into the waveguide and moving 
to the right. We know that the average photon number inside the cavity decays as, 

 
   tn

dt

tnd
ˆ2

ˆ
  

So the average photon flux in the waveguide at 0z  going in the right direction must equal the rate of 
photon loss in the cavity, 

    tntzbtzbvtzF RRgR ˆ2),0(ˆ),0(ˆ,0    

In order to obtain the above relation, one might conjecture that,  
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The above relation is incorrect. ti
R

oetzb  ),0(ˆ  must also include the reflected part of the left-moving 
field (i.e. the part that does not make into the cavity). So we try, 
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The parameter c  needs to be determined. Solving the Equation, 

 
  ti

Lgo
oetzbvtai

dt

tad   ),0(ˆ2)(ˆ)(
ˆ

 

one obtains, 
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After substituting the above result in the expression for ti
R
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From the above expression, the equal-space commutation relation for ),0(ˆ tzbR   is, 
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The left hand side must equal   gvtt 21  . Therefore, c  must equal 1 . Finally, we can write the 

two equations describing the coupling between the waveguide and the cavity as, 
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The corresponding equations for the adjoints are, 
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Note that these equations depend on only one parameter – the loss rate  . The value of   is determined 
by the details of the coupling between the cavity and the waveguide.   
 
In general, a cavity can have more than one source of loss, e.g. material loss inside the cavity, radiation 
loss, waveguide loss. For each distinct loss mechanism, one can introduce an independent Langevin noise 
source. 


