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Chapter 8: Propagating Quantum 
States of Radiation 
 

8.1 Electromagnetic Modes in a Waveguide 
In this chapter we will consider propagating quantum states of radiation in waveguides, or fibers, and free 
space. Consider the Figure shown below for a dielectric waveguide. 

 
 
We assume that the waveguide has a total length equal to L  in the z-direction, and L  will be assumed to 
be very large. The dielectric constant is a function of yx,  only and the wave propagates in the z  
directions. The wave equation is, 
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We first need to find the eigenmodes of the differential operator,  
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We assume eigenmodes of the form, 
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The modes are labeled by the transverse mode index, n , and the propagation vector  . Note that, 
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Normalization of the Transverse Modes: 
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Orthogonality of the Transverse Modes: 
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Orthogonality of the Modes: 
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One can expand the vector potential ),( trA


 in terms of the eigenmodes as follows, 
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The reality of ),,,( tzyxA


 implies, 
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Assuming periodic boundary condition in the z-direction, one finds the following equivalence,  
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Total energy of the field is, 
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8.2 Field Quantization 
As before, we let the fields become operators, and impose the following commutation relations on the 
field amplitudes, 
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Note that, 
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We get the following commutation relation for the creation and destruction operators, 
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The Hamiltonian becomes, 
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The above Hamiltonian gives the following time dependence of the field creation and destruction 
operators, 
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8.3 Slowly Varying Envelope Approximation 
In many cases of practical interest, one is interested in fields ),(ˆ trA


 that, 

(i) Have a bandwidth centered around a particular wavevecter o  

(ii) And depend on only a single transverse mode ),,(  yxn


. Typically, the transverse mode is 

the lowest mode ),,(0  yx


 
In this Chapter we will deal with only a single transverse mode, and so we will drop the transverse mode 
index from now onwards.   
 
For the single mode we are considering there is usually a one-to-one relationship between the wavevecter 
 and the frequency   in the neighbourhood of o  given by the dispersion relation )( or 

equivalently by the inverse relation )( , as shown in the Figure. Suppose,  
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One can Taylor expand the wavevector )(  in the neighborhood of o , 
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where the group velocity gv , the dispersion 2 , and all the higher order dispersions are defined as, 
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Since the bandwidth is centered around o (or, equivalently, o ) we can write ),(ˆ trA


 as, 
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It is convenient to factor out the fast time dependence of the operator ),(ˆ ta   and define, 

 tietbta )(),(ˆ),(ˆ    

For non-interacting free fields the operator   atb ˆ),(ˆ   is independent of time. We then get, 
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One can write, 
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Similarly, 
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Also,  
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The quantities ),(ˆ,),(ˆ,),(ˆ trHtrEtrA


  and their adjoints are called the slowly varying envelops since 
the fast spatial and time dependencies have been factored out. We can also write the fields as, 
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Where the operator ),(ˆ tzb  is, 
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8.3.1 Power Flow 

The power (energy flow per second) in the z-direction is given by the Poynting operator ),(ˆ tzS , 
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Using the identity, 
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we get, 
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If one ignores the vacuum contribution to ),(ˆ tzS , then ),(ˆ tzS  can be written as, 

  ),(ˆ),(ˆ)(),(ˆ tzbtzbvtzS og
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Since ),(ˆ tzS is the operator for energy flow per second, the quantity ),(ˆ),(ˆ tzbtzb  must be the operator 
for photon density (i.e. number photons per unit length). Next, we look at the properties of the operator 

),(ˆ tzb  in more detail.  
 

8.3.2 The Creation and Destruction Operators  tzb ,ˆ   and  tzb ,ˆ  

The operator ),(ˆ tzb  satisfies the equal time commutation relation, 
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Although, the commutation relation is not exactly a delta function in space, it can be approximated as one 
provided one keeps it in mind that the width of the approximate “delta function” in space is of the order of 

 2 . Sometimes the expression for ),(ˆ tzb  is written not as an integral over  , as in, 
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but as an integral over  . This can be done since there is one-to-one relationship between   and 
(given by )(  or )( ). To convert to an integral over  , note that,    
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Note that, 
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Now argue that the Schrodinger operator )0,(ˆ zb  creates a photon approximately at the location z  and 

the operator )0,(ˆ zb  destroys a photon at the location z . Recall that,  

 )'()],'(ˆ),,(ˆ[ zztzbtzb    

The quantum state   given by, 

 0)0,(ˆ zb  

corresponds to a single photon localized at the location z . First note that the above operation creates a 
single photon state in a superposition of different wavevectors, 
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Now we will see what happens when one takes the state   and tries to destroy a photon at a different 

location 'z , 

 )0,'(ˆ zb  

Suppose, 

  )0,'(ˆ zb  

If one successfully destroyed the photon created in the first step then   should be the same as the 

vacuum state 0 , and the inner product 0  should be nonzero. So we evaluate 0 ,  
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The above result tells us that one can destroy a photon only at the same location at which it was created. 

The operators )(ˆ zb  and )(ˆ zb  do indeed create and destroy a single photon at the location z . Recall 
that the delta function that comes from the commutation relation has in fact some finite spatial width of 

the order of the inverse bandwidth  2 . So the photon created by )0,(ˆ zb  is localized in space in a 

region of size of the order of the inverse bandwidth  2 . 
 
8.3.3 Time-Dependence: The Travelling Wave Equation 

We now study the time dependence of the operator ),(ˆ tzb . If one evaluates,  
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The last term is non-zero only if the operator ),(ˆ tb   has time dependence. In the case of non-interacting 

free fields, ),(ˆ tb   has no time-dependence. But in the case of fields interacting with matter, ),(ˆ tb   can 
be time-dependent. In the first term on the right hand side, using the Taylor expansion of the wavevector,  
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and then inverse Fourier transforming, we obtain, 
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The terms inside the brackets on the right hand side describe the effects of dispersion (to all orders) on 

),(ˆ tzb , and the second term describes the effect of interactions.  
 
In the case of a non-interacting and non-dispersive waveguide (or a fiber), we obtain, 
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So our equation becomes, 
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Solution is, 
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Change the dummy variable 'z  to 2tvz g , 
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One can also write the solution as, 
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The above expression implies that the solution at a later time is a translated version of a solution at an 
earlier time.  
 
8.3.4 Time-Dependence: The Heisenberg Approach 
One can also use the Heisenberg equation to see how the operator ),(ˆ tzb behaves in time. We have, 

      ti
zi

o
oo

o

e
L

e
tb

d
Ltzb 























)(
),(ˆ

2
),(ˆ

2

2

 

and at time 0t ,   

 
L

e
tb

d
Lzb

zi oo

o

)(
)0,(ˆ

2
)0,(ˆ 2

2






















 



Quantum Optics for Photonics and Optoelectronics (Farhan Rana, Cornell University) 
 

10 

The time-dependence of the operator ),(ˆ tzb is not given by the Heisenberg relation. To see this, recall 

that the Heisnberg operator ),(ˆ ta   is, 

 tietbta )(),(ˆ),(ˆ    
The corresponding Schrodinger operators are, 

     btbata ˆ0,ˆ)(ˆ)0,(ˆ   
The time-dependence of the destruction operator is, 

 
t

H
it

H
i

eaeta 

ˆˆ

)(ˆ),(ˆ


   
Therefore,    

       t
H
itit

H
iti eebeetatb 

ˆˆ

)(ˆ,ˆ),(ˆ


    
Or equivalently, 

   t
H
it

H
i

ti ebeetb 

ˆˆ

)(ˆ),(ˆ
     

Note that, 

 
t

H
it

H
i

ebetb 

ˆˆ

)(ˆ),(ˆ


   

This is because we had inserted a time-dependent exponential in the definition of the operator ),(ˆ tb  . 
Now we can write, 
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So the Heisenberg operator corresponding to the operator )0,(ˆ zb  is in fact ti oetzb )(),(ˆ  .  
 

For a non-interacting waveguide (or a fiber) (where, )(ˆ),(ˆ  btb  ) the above relation gives, 
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And for a non-interacting and a non-dispersive waveguide (or a fiber) (where we also have, 
)()()( ogo v   ) we get,  
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and it is easy to see that, 
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The above is the same result as the one obtained earlier by solving the travelling wave equation for a non-
interacting and non-dispersive waveguide, 
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8.3.5 Equal-Space Commutation Relations 
We know that, 

   )(),(ˆ),,(ˆ zztzbtzb    
For a non-dispersive and non-interacting waveguide, we can find a simple expression for the equal-space 
commutation relation, 
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8.3.6 Free-Space Generalization 
The discussion above is also relevant to free-space propagation if we assume the dispersion relation for 
free space, 
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and note that in the case of free space, 
   oyx  ,  
The transverse modes can be chosen as constants and the modes will then represent plane waves with 
infinite transverse extension propagating in the z  direction. If we want to consider a beam with a finite 
size in the transverse direction, then we would need to consider appropriate free space radiation modes, 
such as Hermite-Gaussian modes, in which case the beams would converge or diverge in the transverse 
direction with distance and if this convergence or divergence is small over distances of interest then one 

can simply replace the transverse mode  yx,


 in our previous analysis with the transverse beam profile. 
 
8.3.7 Photon Flux Operator 
We have seen that the energy flow per second is given by, 

 ),(ˆ),(ˆ)(),(ˆ tzbtzbvtzS og
   

The photon flux operator ),(ˆ tzF  is therefore, 

 ),(ˆ),(ˆ),(ˆ tzbtzbvtzF g
  

The operator ),(ˆ tzF  gives the number of photons passing per second at location z  at time t .  

 
8.3.8 Photon Density Operator 
Since the photon flux operator is,  

 ),(ˆ),(ˆ),(ˆ tzbtzbvtzF g
  

The photon density operator ),(ˆ tzn  (operator for the number of photons per unit length) must therefore 
be, 
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8.3.9 Photon Number Operator 
One can define photon number operators for propagating radiation packets in two ways. The photon 
number operator at location z  for photon packets is defined as, 

         








tzbtzbvdttzFdtzN g ,ˆ,ˆ,ˆˆ  

The operator )(ˆ zN  corresponds to counting photons in radiation packets while sitting at one fixed 

location z . The operator )(ˆ zN  corresponds to the photon number measurements made by a 
photodetector.  
 
The photon number operator at time t  for radiation packets can also be defined as, 
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The operator  tN̂  corresponds to the number of photons in the entire photon packet at one given instant. 

For a non-interacting, non-dispersive waveguide (or fiber), we have )0,(ˆ),(ˆ tvzbtzb g , and 
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So for a non-interacting, no-dispersive waveguide, the photon number operator for a packet is the same 
whether one counts photons sitting in one position as the packet passes by or if one counts the photons in 
one instant in the entire packet. Since there is no loss or gain of photons in the absence of interactions, the 
photon number operator for photon packets does not depend upon how one does the counting. 
 
 
8.4 Propagating Quantum States 
In the following Sections, we will consider some simple propagating quantum states. We will always deal 
with a non-dispersive, non-interacting, medium for which,  
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Solution of the above equation is,  
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8.4.1 Photon Number Packets 
We defined  tzb ,ˆ  as, 
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The equal time commutation relations are, 
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The photon density operator is, 
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Single-Photon Pockets: Consider the state, 
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The state   represents a single photon localized at 'z  and moving with group velocity gv . It is a 

photon packet because   is a linear superposition of single photon number states with different 

wavevectors, 
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We can find out more about 0)0,(ˆ zb    by applying the density operator )0(ˆ)0(ˆ)0(ˆ z,bz,bz,n   

on  , 
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Therefore,   is an eigenstate of the photon density operator ,0)(zn̂  with an eigenvalue  'zz  . The 

eigenvalue is exactly what one would have expected for a localized photon. The state   is not properly 

normalized. The state   is extremely localized. What if we want to construct a state corresponding to a 

relatively fat single photon packet , one that is not so sharply localized and also one whose state is 
properly normalized, and therefore more realistic. Consider the state, 
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The norm of the state   is, 
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 The state   is not a photon density operator eigenstate since it 

is a linear superposition of photon density eigenstates. We can calculate the average value of the photon 
density for the state   as follows, 
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One way to obtain the final result is to move all the destruction operators appearing the expression above 
towards the right using the commutation relations. Note that,  
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The above result implies, 
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Thus, the photon density is distributed in space with a probability distribution given by   2
zA . We 

already know that   



1z

2
Adz . The average photon flux is therefore   2

zAvg  (which has the 

correct units of 1/sec).  

 
2

)()0(ˆ zAvz,F g  

Also, note that, 
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where,  oA  ~
 is the Fourier transform of  zA . Therefore,   is a linear superposition of single 

photon states of different wavevectors and each wavevector in the linear superposition is weighed by 

 2~
oA   .   

We will write these states as, 

  zAzbzAzd 







 




 0)0,(ˆ)(  

Time-Dependence: What if we evaluate    tzn ,ˆ ? In time t , we expect the single photon packet to 

have travelled a distance .tvg   tzb ,ˆ  satisfies, 
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Similarly, 

    0,ˆ,ˆ tvzbtzb g   

Therefore, 

            .0,ˆ0,ˆ0,ˆ,ˆ,ˆ,ˆ tvzntvzbtvzbtzbtzbtzn ggg    

     0,ˆ,ˆ tvzntzn g  

Since for all z , 

    20,ˆ zAzn   

       2
0,ˆ,ˆ tvzAtvzntzn gg    

Therefore, at time t  the photon density has moved forward by tvg .  

Multi-Photon Packets: In order to construct packets containing n  photons, we can generalize as 
follows. Consider the state, 
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One can show that 1nn  if   



1

2
dzzA . Let us calculate the average photon density, 
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               00,ˆ0,ˆ0,ˆ0
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n
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The computation is carried out by shifting  0,ˆ zn  to the extreme right (or left) using the commutation 
relations. The answer is, 

      2
0,ˆ zAnnznn   

 
8.4.2 Coherent State Photon Packets 
Consider the state defined below for any complex function  z , 
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Properties of  T̂  and the State  : 
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Therefore,   is an eigenstate of the  0,ˆ zb  operator.   is in fact a travelling coherent state packet. 

The average values of the photon density operator and the photon flux operator are, 
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Just like closed cavity coherent states, coherent state packet   is a linear superposition of photon 

number packets n . There is no constrain on  z  and  




2
zdz   can be any number. Suppose 

  



oNzdz 2 , then oN  is the average photon number in the state  . To see this we use the 

operator for the total number of photons at location z , 

    



tzFdtzN ,ˆˆ  

and calculate the average photon number for the state  , 
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Thus,   is a coherent state packet with an average photon number equal to   



oNdzz 2 . What 

about photon number fluctuations? We start from, 

 

     

       

    
    
    

    
   

   

    

 

  

 











  

  







  

 

 

































































ooggo

ggg

gg

ggg

gggg

gg

gg

gg

ggg

NNtvzdtvN

tttvztvzdtdtvydy

tvzbtvzb

tvztvzdtdtv

tvztvzvdtdtv

tvztvzb

tvztvzb

tvztvzb

tvztvzbdtdtv

TtzFtzFTdtdt

tzFtzFdtdtzN

22
11

2

212121

2
2

21

21
*

21
2

2
2

2
1

2
21

2

22

2
*

2

11

1
*

121
2

2121

2121
2

)()()(

00,ˆ0,ˆ0

00,ˆ

0,ˆ

0,ˆ

0,ˆ0

0ˆ,ˆ,ˆˆ0

,ˆ,ˆˆ





















 

Therefore, 

       oNzNzNzN  222 ˆˆˆ   

The standard deviation in photon number is equal to the mean, as expected for coherent states.  
 
8.4.3 Continuous-Wave (CW) Coherent States 
A continuous beam of light is closer to common experience than ultrashort pulses (or packets). Suppose 
we want to construct a coherent state corresponding to a continuous electromagnetic wave of phase   

and power (i.e. energy flow/sec) equal to oP . The photon flux is then ooP   and is independent of 

location. We define a complex function  z  as, 
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Then   



dzz 2 . A continuous wave of constant power will have infinite value for the average 

photon number. The average photon flux is, 
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The flux is independent of the location.  
 
Photon Flux Noise: We want to evaluate the noise in the photon flux for the continuous wave coherent 
state. We know the average flux is ooP  . Below, we calculate the flux-flux correction function, 
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The left hand side further simplifies to, 
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The photon flux noise correction function is then, 
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and, 
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2121 tt

h
P

tzFtzF
o

o  


  

The noise in the photon flux is delta correlated in time. The spectral density of the photon flux noise is, 
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)(FFS   is flat, and has a value equal to the mean photon flux. Therefore, the photon flux for 
continuous wave coherent states has shot noise characteristics. In fact, it is not difficult to show that the 
noise in photon flux is indeed exactly shot noise. This is an interesting result. It says that a person sitting 
in one location and observing photons in a continuous wave coherent state of radiation will see that 
photon arrival times are completely uncorrelated.   
 
8.4.4 Time Dependence of Propagating States in the Schrodinger Picture 
Consider a single photon packet at time 0t  given by, 
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The state  t  is found as follows, 
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Note that we have ignored the infinite vacuum energy in the derivation above. The above result shows 
that at time t  the wavepacket has moved forward in space by tvg . As another example, consider a 

coherent state packet given at time 0t  given by, 
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We want to find the state  t  at a later time t . We get, 
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8.4.5 Quadrature Operators and Quadrature Noise for Propagating States 
The quadrature operators for propagating states are defined as, 
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Note that unlike the quadrature operators for cavity fields, quadrature operators for propagating fields 
have units of inverse square root of length.  
 
As an example, consider a coherent state, 
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where, 

      ziezz    

The average value of the quadrature  tzx ,ˆ1  is, 

Time t = 0 Time t  z  

   



Quantum Optics for Photonics and Optoelectronics (Farhan Rana, Cornell University) 
 

21 

              0
2

,ˆ,ˆ
00,ˆ0 1 





t

tzbtzb
tttzxt   

Recall that, 
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The average value of the quadrature  tzx ,ˆ2  is, 
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The next question to ask is, what is the quadrature noise? As you will see, it is not meaningful to evaluate 

quantities such as,  tzx ,ˆ 2
1  or  tzx ,ˆ 2

2 . Instead we look at the quadrature noise correlation 

functions,    ',ˆ,ˆ 11 tzxtzx   and    ',ˆ,ˆ 22 tzxtzx  . We assume, as before, a coherent state, 

  
 

 zet
zbzzbzzd





  

 00
)0,(ˆ)()0,(ˆ)( 11

 

and find    ',ˆ,ˆ 11 tzxtzx , 
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Therefore, the quadrature noise correlation function is, 
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Similarly, one can show that, 
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In general, for a coherent state, 
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Earlier, in the course we had seen that for coherent states inside a cavity, the mean square quadrature 
fluctuations equalled 41  for every quadrature. For propagating coherent states, the quadrature noise 

correlations are delta-correlated with a weight proportional to 41  for every quadrature.   


