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Chapter 7: Quantum States of Light 
 

7.1 Cavity Fields 
The operators for the fields inside a cavity are, 
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The Hamiltonian is, 
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The time dependence of the operators in the Heisenberg picture is, 
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In this chapter we will mostly consider only a single mode of the field in a cavity and ignore the 
remaining modes. In order to keep the notation from getting too cumbersome, we will drop the mode 
number in the subscripts (e.g. "m" above) unless necessary, and write the Hamiltonian and the field 
operators as follows, 
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7.2 Fock States or Photon Number States 
Number states of a mode contain a definite number of photons. As discussed in an earlier Chapter, these 
are eigenstates of the photon number operator and are defined as, 

Cavity
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It follows that, 

  0|ˆ||ˆ|   nannan  

and, 

  0),(ˆ),(ˆ  ntrHnntrEn


. 

So surely n  cannot be the quantum state of radiation coming out of, say, antennas, where the field is 

expected to have a non-zero average value.  
 
7.3 Coherent States 
Coherent states of light are the closest approximation to the classical radiation emitted from oscillating 

currents. We define an operator )(ˆ D  (called the displacement operator) as, 

 aaeD ˆ*ˆ)(ˆ  
  

where   is a complex number, 

  ie||  

A coherent state of a radiation mode,  , is defined as, 
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we have, 
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7.3.1 Properties of )(ˆ D  

)(ˆ D  has the following properties: 

(i) aaaa eeeeD ˆ*ˆ2ˆ*ˆ
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(ii)   aDaD ˆ)(ˆ)(ˆ  
Proof: 

 aaaa eae ˆ*ˆˆ*ˆ ˆ   
 

Recall that, 

   1ˆ,ˆifˆˆ ˆˆ
 BAAeAe BB   

   aDaD ˆ)(ˆˆ)(ˆ   

(iii) *ˆ)(ˆˆ)(ˆ    aDaD  
The above relation is obtained by taking the adjoint of the relation in (ii).  
 
7.3.2 Properties of Coherent States 
Important properties of coherent states are as follows: 
(i) Coherent states are properly normalized, 

 10|00)(ˆ)(ˆ0|    DD  

(ii) A coherent state is a linear superposition of photon number states, 
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(iii) If a photon number measurement is performed on a coherent state, the probability  nP  of finding n  

photons in a coherent state   is, 
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The photon number distribution in a coherent state looks like a Poisson distribution.  
(iv) Coherent states are eigenstates of the destruction operator â , 
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Since,  

   aDaD ˆ)(ˆˆ)(ˆ  

we get upon multipying both sides with  D̂ , 
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The above equation also implies, 
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(v) Mean photon number and variance in the photon number for a coherent state are as follows, 
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Therefore, 

 nnnn ˆˆˆˆ 222   

The variance in photon number is equal to the mean. This is not surprising since we saw earlier that the 
photon number distribution is Poissonian. 
(vi) Different coherent states are not orthogonal. Suppose   and   are two different complex numbers 

and   and   are the corresponding coherent states. We now find the value of the inner product 

 | , 

 0)(ˆ)(ˆ0|   DD  

Since,  
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(vii) Coherent states form a complete set. The completeness relation can be written as, 

 1̂
1











 ir dd   

where ir i  .  
(viii) Mean values of field operators are non-zero for coherent states. Note that,  
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Therefore, if the field operator for a single field mode is written as, 
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Notice that if  ie  then the phase   is also the phase of the average values of the field oscillations.  

 
7.3.3 Quadrature Operators and Quadrature Fluctuations of Coherent States 
Recall from Chapter 6 that all narrow band real signals )(ty  can be represented by phasors, 

    tititi etxetxetxty   )(*)(
2

1
)(Re)(    

If,  
 )()()( 21 tixtxtx   

then )(1 tx  and )(2 tx  are the quadratures of )(ty . With this in mind, and the fact that (for a single mode 
cavity), 
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we define the (Schrodinger picture) quadrature operators, 1x̂  and 2x̂ , for a mode as (mode subscript 
suppressed),  
 21 ˆˆˆ xixa   

Note that 1x̂  and 2x̂  are Hermitian operators and observables. It follows that, 
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If 111 ˆˆˆ xxx   and 222 ˆˆˆ xxx  , then the commutator result above implies the uncertainty 

relation, 
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For a coherent state  , with  ie , we have, 
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This implies, 
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Also,  
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Thus, for coherent states 
16
1ˆˆ 2

2
2
1  xx . Coherent states satisfy the quadrature uncertainty relation 

with equality and are therefore called minimum uncertainty states. 
 
7.3.4 Vacuum Quadrature Fluctuations 
The vacuum state 0  may also be considered a coherent state with 0 . Therefore, the quadrature 

fluctuations of the vacuum are the same as for the state  , 
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7.3.5 Generalized Quadratures and Generalized Quadrature Fluctuations for 
Coherent States 
Recall that a narrowband real signal  ty  can be written as,  

  tietxty  )(Re)(  
where,  
 )()()( 21 txitxtx   

The quadratures are the real and imaginary components of )(tx . In the complex plane, this means )(1 tx  

and )(2 tx  are components of )(tx  along x -axis (real axis) and y -axis (imaginary axis), respectively. 

We may also write )(tx  as, 
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where now we are looking at the components of )(tx  along the two perpendicular axis of a coordinate 

system that is rotated at an angle   with respect to the yx   coordinate system. With this as motivation, 
we define the generalized quadrature operators as, 
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The generalized quadratures satisfy the commutation relation,  

  
2

ˆ,ˆ 2
i

xx   

 
16

1ˆˆ 2
2

2   xx  

For a coherent state, 
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For a coherent state, mean square quadrature fluctuations are the same no matter which "direction" you 
look. This can be graphically illustrated by drawing error diagrams. 
 
7.3.6 Error Diagrams of Quantum States of Radiation 
The fluctuations in quantum optical states are sometimes depicted graphically in a 21 xx   plane. An 

arrow is drawn and the tip of the arrow is at the point where 1x  equals 2 aa  and 2x  equals 

iaa 2 . The dimensions of the shaded figure (or the error figure) drawn around the tip of the arrow 

along different directions indicate the magnitude (root mean square value) of the fluctuations around the 
average value along those directions.  
 
As an example, consider a coherent state  . We have, 
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So for a coherent state we draw an arrow in the complex 21 xx   plane whose tip is at the coordinates

     Im,Re . For a coherent state we know that, 
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In fact, for a coherent state, as discussed earlier, the fluctuations are the same along any direction, i.e.,

41ˆ 2  x  for any value of  . Therefore, the fluctuations in a coherent state are represented by 

drawing a circle of radius 21 , and area 4 , around the tip of the arrow, as shown below.  
 

 
It should be noted here that unlike classical signals, where fluctuations represented the random motion in 
time of the tip of the phasor or the variations in an ensemble of signals, the fluctuations represented in the 
error diagram above are of quantum origin. The error diagram means that coherent states do not have a 
well defined value of, say, the 1x  quadrature. As will be shown later, a coherent state is in fact a 
superposition of quadrature eigenstates.  
 
The vacuum state 0  is also a coherent state for which the average values of both the field quadratures 

are zero and the mean square fluctuations in each quadrature equal 41 . Therefore, a vacuum state is 

represented in the 21 xx   plane as shown below.  
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7.3.7 Coherent States as Displaced Vacuum States 
In this Section we will show that coherent states are “displaced” vacuum states, and clarify the meaning 

of the term “displaced.” We saw earlier in Chapter 5 that the average values of fields )(ˆ rA


, )(ˆ rE


 

and )(ˆ rH


in photon number states are zero. For example, if the field operator )(ˆ rA


 for a single mode is,  
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then for a state with n  photons, 
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We also showed that coherent states have non-zero average values of the field operators,  
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We now explore the reason behind the non-zero average values of the field operators for coherent states 
from a different angle. Let q  be the eigenstates of the field amplitude operator q̂ , such that, 
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where )(qn  is the n -th Hermite-Gaussian. The above equation implies that the field operator will have 

a non-zero average value if q  has a non-zero value when averaged with respect to the wavefunction 

)(qn . Recall that for the vacuum state the ground state wavefunction in q-space is Gaussian, 
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Since 
2

0 )(q  is centered at 0q , the average value for the q̂  operator is zero. In fact, the Hermite-

Gaussian wavefunctions 
2

)(qn  for all "n " are centered at zero, and so all photon number states have 

zero average field values.  
 

What if we consider a "displaced" version of 
2

0 )(q , say 
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0 )(' q , such that, 
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Since the momentum operator p̂  acts like a derivative on a q-space wavefunction, 
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where, 
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Therefore, the sought after state   is a coherent state! The Figure below shows the q-space probability 

distribution of a vacuum state and a coherent state and the action of the displacement operator )(ˆ D . 

Since )(ˆ D  displaces the vacuum state, it is called a displacement operator. Coherent states are thus 
"displaced" vacuum states.  

 
 
7.3.8 Quadrature Eigenstates, Quadrature Fluctuations, and Error Figures 
We had said earlier that a coherent state is a superposition of quadrature eigenstates. Here we quantify 
this notion. First note that both 1x̂  and 2x̂  quadratures cannot be measured simultaneously since they do 

not commute,   2)(ˆ),(ˆ 21 itxtx  . Recall that for a particle ipx ]ˆ,ˆ[ , so we have a wavefunction in 

position )(|),( txtx   , and we have a wavefunction in momentum )(|),( tptp   , and the 

probabilities of finding a particular value of position or momentum (but not both) upon measurement are 

given by 
2

),( tx  and 
2

),( tp , respectively. Similarly, quantum states of radiation (e.g. coherent 

states) can be expanded in the eigenstates of the 1x̂  quadrature or in the eigenstates of the 2x̂  quadrature 
(but not both).  
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Since the two quadrature operators are proportional to the operators q̂  and p̂ , therefore, the 

eigenstates of q̂  (i.e q ) are also eigenstates of 1x̂ with eigenvalue qo
2


, and eigenstates of p̂  (i.e. 

p ) are also eigenstates of 2x̂  with eigenvalue p
o2

1
. To avoid confusion below, I will write q  as 

q
q ˆ  and p  as 

p
p ˆ  where the subscripts indicate the operators of which the states are eigenstates. 

From the above discussion, 
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where c and b will be determined to properly normalize the eigenstates of 1x̂  and 2x̂ . We have, 
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or, using (1) above, 
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Similarly, one can show that, 
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Completeness: We have. 
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Now that we have the eigenstates of the quadrature operators, we will try to express coherent states in 
terms of these eigenstates. We can write, 
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The last line follows from using, 
 

constant if          
 ]ˆˆ[

ˆˆ2

ˆ,ˆ
ˆˆ

B,Aeeee BA
BA

BA  

Take the inner product with the bra q
q̂

on both sides to get, 

 

)(

)(

0

2
sin)2sin(

2

0

2
cos2

sin)2sin(
2

ˆ

2

2

o

qii

q
qii

q

qqee

qeeeq






























 

where ooq  2cos . Similarly, one can show that, 
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Finally, 
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The above expressions show that a coherent state can be considered as a superposition of the eigenstates 
of the 1x̂  operator. This superposition has a Gaussian probability distribution with a mean value centered 

at  cos  and the variance of this distribution is 41 . Similarly, one may also consider a coherent state 

as a superposition of the eigenstates of the 2x̂  operator. This superposition also has a Gaussian 

probability distribution with a mean value centered at  sin  and the variance of this distribution is also 

41 . These results justify the error diagram for the coherent states discussed earlier and show below.  
 

 
 
Averages Using the Quadrature Distributions: Knowing the expansions of a coherent state in terms of 
the quadrature eigenstates, one can calculating averages of quantities of interest using these expansions. 
For example, 
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And similarly, 
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Note that the above results were obtained earlier in a different way without the knowledge of the 
probability distribution functions associated with the expansion of a coherent state in quadrature 
eigenstates. If one were to write   as a linear super position of the eigenstates of 1x̂ , the resulting 

(root-mean-square) uncertainty would equal the extent of the figure in the direction of 1x . Similarly, if 

one were to write   as a linear super position of the eigenstates of 2x̂ , the resulting (root-mean-square) 

uncertainty would equal the extent of the figure in the direction of 2x .  

 
One can define the eigenstates of the generalized quadrature operators, x̂  and 2ˆ  x  (for any value of 

 ), and expand   in terms of these eigenstates, 
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Since the error figure for a coherent state is a circle, it means that the fluctuations in all directions are 
equal and one may safely guess that,  
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7.3.9 Time Dependence of Coherent States 
Suppose the quantum state of a single mode field at time 0t  is a coherent state, 

     00ˆ0 ˆˆ aaeDt
    

We need to find  t . Suppose the Hamiltonian is, 

 aaH o
 ˆˆ   

We have ignored the vacuum energy since it plays no interesting part in the discussion that follows. We 
have, 
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One can write, 
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Note that all the time dependence goes into the definitions of the complex numbers   and  .  
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7.3.10 Time Dependence of the Quadrature Operators 

For a real signal     tietxty  Re  writing      txitxtx 21   implied that the fast time 

dependence of )(ty  given by  was not included in the definitions of )(1 tx  and )(2 tx  but was 

explicitly factored out. For quantum fields we know that the Heisenberg operator  trA ,
̂

 is, 

  )(ˆ)(ˆ
2

1
),(ˆ tatatrA 


 

We write this as, 
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2

1
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Therefore, we define time dependent quadrature operators  tx1ˆ  and  tx2ˆ  as,  
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For free fields (i.e. fields whose time dependence is governed by the Hamiltonian aaH o
 ˆˆ  ), 
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and therefore )(ˆ1 tx  and )(ˆ2 tx  will be independent of time. We can also write, 
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And for the generalized quadratures we get, 
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Note of Caution: The time dependence of a quadrature operator is not governed by the Heisenberg 
equation, 
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The time dependence of a quadrature operator is defined only through the equation, 
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)(ˆ)(ˆ
)(ˆ
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The explicit presence of time exponentials in the above relation implies that the time dependence of the 
quadrature operators is not given directly by the Heisenberg equation. For any quantum state, 
         txtttxt   ˆ0)(ˆ0   

The question then is how does one compute averages related to the quadrature operators in the 
Schrodinger and Heisenberg pictures. Below we discuss how to calculate the average of )(ˆ tx in the two 
pictures.  
 

tie 
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Heisenber Picture: Suppose one has the quantum state  0t  at time 0t . One first computes the 

Heisenebrg operators    tata ˆ,ˆ  at time t , find the desired quadrature operator )(ˆ tx , and then 
compute,  

   0)(ˆ0  ttxt    

Schrodinger Picture: Suppose one has already computed the quantum state  t  at time t . The 

quantity    0)(ˆ0  ttxt    found above is then the same as, 

    teeaeea
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tiitii oo




2

ˆˆ  
 

Note that in the expression above the creation and destruction operators are in the Schrodinger picture. 
However, the time dependent complex exponentials remain.  
 
Coherent States: For a coherent state, one obtains,  
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And, 
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Note that the quadrature averages and variances are independent of time. This is true only for non-
interacting free fields.  
 
 

7.4 Squeezed States of Light 
 
7.4.1 Introduction 
For coherent states, 
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Coherent states satisfy the uncertainty relation,  

 
16

1ˆˆ 2
2

2   xx  

with equality. Squeezed states also satisfy the uncertainty condition with equality but have different 
fluctuations in quadratures x̂  and 2

ˆ  x . Obviously, they do that by decreasing the fluctuations in one 

quadrature at the expense of increasing the fluctuations in the other quadrature. 
 
7.4.2 The Squeezing Operator 
Squeezed states ,  are obtained by first squeezing the vacuum state 0  by the squeezing operator 

)(ˆ S , where, 
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and then displacing it with )(ˆ D , 

0)(ˆ)(ˆ,  SD  

The squeezing parameter   is a complex number, 

  2ier    

)(ˆ S  has the followng properties:  

(i) )(ˆ)(ˆ)(ˆ1̂)(ˆ)(ˆ 1    SSSSS  

(ii)  If  2ier   , then, 
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The proof follows from application of the formula, 
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and then summing up the resulting series.  
 
7.4.3 Properties of Squeezed States 

In what follows, we will assume that  2ier  . Squeezed states have the following properties: 
(i) Averages of creation and destruction operators in squeezed states are as follows, 
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And, 
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(ii) The number operator average is, 
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(iv) The quadrature operator average is, 

 

2

,
2

ˆˆ
,,ˆ,











ii

ii

ee

eaea
x











 

 
i

ee
x

ii

2
,

2
ˆ,





 

  

(v) The most distinguishing property of squeezed states compared to coherent states is the average 
fluctuations in the quadrature operators, 
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So if we let    (i.e., look at the quadratures x̂  and 
2

ˆ
 x ) where   is the angle associated with the 

squeezing parameter  , then, 
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The squeezed state  ire 2,   has reduced fluctuations in the quadrature x̂  compared to the 

quadrature 2ˆ  x . The error region in the 21 xx  plane for a squeezed state with 0  is shown in the 

Figure below. The reduced fluctuations in one quadrature and the increased fluctuations in the other 
quadrature, make the error region look like an ellipse.  
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Also note that, 
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Squeezed states, like coherent states, are minimum uncertainty states since they satisfy the uncertainty 

relation with equality. The error region is an ellipse of semi-minor axis equal to rr ee  
2

1

4

1 2 , and 

semi-major axis equal to rr ee
2

1

4

1 2  . The Figure below shows the error region for a squeezed state 

 ire 2,   for 6  . The squeezed state has reduced fluctuations in the quadrature x̂  compared to 

the quadrature 2ˆ  x . 

 
Squeezed Vacuum: A squeezed vacuum state ,0  is obtained by applying the squeezing operator to a 

vacuum state, 

 0)(ˆ,0  S  

For squeezed vacuum, the average values of the quadratures are zero and the quadrature fluctuations are 

dictated by the squeezing parameter  2ier  . The figure below shows the squeezed vacuum state for 

2  .  
 



x1 


A squeezed state 

x2 






x1 


A squeezed state x2 






Quantum Optics for Photonics and Optoelectronics (Farhan Rana, Cornell University) 
 

23 

 
 
7.4.4 Squeezed States and Two-Photon Coherent States 
Suppose we define two new operators b̂  and b̂  as a linear combination of the operators â  and â , as 
follows, 
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Here,   and   are complex numbers. If we also want to enforce the commutation relations for b̂  and 

b̂  (i.e.   1ˆ,ˆ bb ), then we must have, 
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Now suppose we define b̂  and b̂  as, 
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You can verify that   1ˆ,ˆ bb . We now want to find eigenstates of the operator b̂ . We know that 

coherent states are eigenstates of the operator â .   âi.e. . We try the following state,  

0)(ˆ)(ˆ  DS  

In the above expression, the vacuum state is displaced first and then squeezed later. The resulting state is 
not exactly a squeezed state but it is closely related. Note that, 
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Therefore, the state 0)(ˆ)(ˆ  DS  is an eigenstate of the operator b̂  with eigenvalue . These states are 

called two-photon coherent states. The 0  state is the vacuum (or ground state) of â  in the sense that 
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00ˆ a . The state  ,00)(ˆ0)0(ˆ)(ˆ  SDS , or the squeezed vacuum state, is the ground 

state of the operator b̂ , i.e, 

 00)(ˆˆ Sb  

So we now have the following two sets of states: 

 Two-photon coherent states: 
p

DS  ,0)(ˆ)(ˆ    

 Squeezed states: 
s

SD  ,0)(ˆ)(ˆ   or just ,  

 
The question that arises now is whether the above two sets represent the same or different states? We will 

answer this question next. One can also generate an eigenstate of b̂  with eigenvalue   by operating with 

 bb ˆˆexp *  on the ground state 0)(ˆ S  of b̂ , i.e., 
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The above expression establishes the relationship between two-photon coherent states and squeezed 
states, 
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7.4.5 Time Dependence of Squeezed States 
Suppose the quantum state of a single mode field at time 0t  is a squeezed state, 

       0ˆˆ,0  SDt   

We need to find  t . Suppose the Hamiltonian is, 

 aaH o
 ˆˆ   

We have, 
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where, 
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One can write, 
    ttt  ),(  

Note that all the time dependence goes into the definitions of the complex numbers   and  .  
 
 

7.5 Phase of Quantum States of Radiation 
 
7.5.1 Introduction 
We begin by asking the following question: What is the phase of a photon? And does this question even 
make sense? Let us start from what we already know about phase. We know that classical electric and 
magnetic fields inside a cavity oscillate and if one plots the strength of electric field at any location in the 
cavity one obtains a curve in time that looks like as shown in the Figure below.  

 
This curve has a “phase” associated with it. So we do have a concept of a phase for a field. The phase of a 
“photon” is an ill-defined concept. The phase of the “field” is a more meaningful concept. We also know 
that since the electric field operator is, 
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the electric field can have an average value that is non-zero only for states that are linear superpositions of 
photon number states. Photon number states , i.e. states with a definite number of photons, give an 

average value of zero for the electric field. For example, if  then   0,ˆ  trE


, but if 

n

n

t

E



Quantum Optics for Photonics and Optoelectronics (Farhan Rana, Cornell University) 
 

26 

 1
2

1
 nn  then   0,ˆ  trE


. Therefore, states for which the concept of “phase” should 

make sense must not be states of a definite photon number. These basic ingredients must be reflected in 
whatever operator we finally construct to describe the phase of the field.  
 
Let us first look at a coherent state, 
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So the phase of the complex   parameter defines the phase of the average field. The average values of 
the quadrature operators, 
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In the 21 xx   the state phasor is drawn as shown below.  

 
One can see the problem in identifying the phase of the average field if 1 . In that case, the error 

circle would be close to the origin and the quadrature fluctuations would be larger than the mean 
quadrature values.  
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7.5.2 Phase Fluctuation Operator 
A Hermitian phase operator for a field is not particularly easy to construct. This difficulty should not be a 
surprise since the absolute value of phase cannot be a measurable or an observable property. However, 
phase differences are measurable. In what follows, we will concentrate on constructing a phase 
fluctuation operator for quantum states.  
 
Consider any arbitrary quantum state of radiation   for which the average values of the quadrature 

operators have the following non-zero values,  
oiti eAeta   )(ˆ  

  


o

o

Atx

AAtx





sin)(ˆ

real  is  cos)(ˆ

2

1




 

The average value o  of the phase for such a quantum state is well defined as long as 1A . If a 

measurement is made of any one quadrature, the relative uncertainty     22 ˆˆ txtx   will be 

inversely proportional to 2A  and, therefore, small if, as assumed, 1A .  
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We can also write using generalized quadratures, 
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If the average phase of the field is o , i.e.,  
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 oiti eAeta   )(ˆ  

then, as discussed earlier in the case of classical signals, the quadrature fluctuation operator  tx
o

ˆ  in 

the direction o  will describe amplitude fluctuations and the quadrature fluctuation operator 

 tx
o 2ˆ    in the direction perpendicular to the direction o  will be proportional to the phase 

fluctuations. This is shown in the Figure below.  

 
One can write,  

 
       

     o
oo

o
o

o
o

i

iititi

etxitxA

etxietxetaeta












2

2

ˆˆ             

ˆˆˆˆ








 

If the average value of the phase is o , and if 1A , then a phase fluctuation operator,  t̂ , can be 
defined as follows, 
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The amplitude fluctuation operator is simply  tx
o

ˆ . As an example, we calculate the phase fluctuations 

of a coherent state  . Suppose that, 
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The larger the magnitude   of a coherent state, the smaller the mean square phase fluctuations.  

 
7.5.3 Photon Number Fluctuation Operator 
Suppose for a quantum state the average photon number is on  and the average phase is o ,  
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We assume that 1A  and so the average phase o  is well defined. Then, as before, one can write, 
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The photon number operator becomes, 
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We have ignored terms that contain squares of the quadrature fluctuation operators. The above relation 

shows that the average photon number on  must approximately equal 2A  and the photon number 

fluctuation operator  tn̂  must approximately equal  txA
o

ˆ2  . These approximations are excellent 

when 1 onA . So we define an approximate photon number fluctuation operator as,  
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7.5.4 Photon Number and Phase Uncertainty Relation 
There is an interesting uncertainty relation between the photon number fluctuation operator and the phase 
fluctuation operator. The photon number fluctuation and the phase fluctuation operators for a quantum 
state with an average number of photons equal to on  are, 
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The commutation relation between the photon number fluctuation operator and the phase fluctuation 
operator follows from the commutation relation between the quadrature operators, 
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Therefore, the photon number and the phase (with respect to a reference) of a radiation field cannot be 
measured simultaneously with high accuracy. In other words, measurement of one will necessarily disturb 
the other. The other way to interpret the same result is that if a quantum state of radiation has a well 
defined value for the phase of the field then this quantum state cannot have a well defined number of 
photons and it must be a superposition of different photon number states. On the other hand, if a quantum 
state has a well defined number of photons then it cannot have a well defined value for the phase of the 
field.   
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For a coherent state with average number of photons equal to on , 
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The photon number and phase uncertainty relation is satisfied with equality. Note that larger the average 
photon number, the smaller the uncertainty in the phase.  
 
The definitions for the phase fluctuation operator and the photon number fluctuation operator presented 
here work well only when the quantum state has a large average photon number on  and a well defined 

average phase o . As 0)(ˆ  ontn , the phase fluctuations described by the operator 

ontxt
o

)(ˆ)(ˆ 2  can become very large. The problem is that phase of a field is not a well 

defined concept when the photon number is very small. For example, consider two different coherent 

states, with the same phase, but for one 1)(ˆ
2  tn  and for the other 1)(ˆ

2  tn , as shown 

in the Figure below.  

 
When 1 , the quadrature fluctuations are comparatively large, and its difficult to categorize 

quadrature fluctuations as amplitude or phase fluctuations. For example, )(ˆ 2 tx
o    now also 

contributes to amplitude fluctuations. Although one can still talk about quadrature fluctuations, 
),(ˆ),(ˆ 2 txtx    but no quadrature fluctuation, for any value of  , can be labled as an amplitude 

fluctuation and no quadrature fluctuation can be labled as a phase fluctuation. 
 
Phase Noise in Squeezed States: Consider now a squeezed state ,  with a large average photon 
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The average phase of the field is o . It is not necessary that the angles o  and o  be the same. First, 

we assume that oo   . We also assume that 
2  is large and therefore on  is large. The fluctuation 

operators are, 
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The above result agrees reasonably well with the exact result for )(ˆ 2 tn  for a squeezed state,  
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2  is large. For phase fluctuations we get, 
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The number-phase uncertainty relation is satisfied with equality (approximately),  

 
4

1
)(ˆ)(ˆ 22  ttn    

Compared to a coherent state, the photon number fluctuations in this squeezed state are reduced (or 
squeezed) at the expense of increased phase fluctuations (see the Figure above). Now suppose, that the 
squeezing parameter’s phase o  is 2 o . As before, 
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It follows that, 
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Now phase fluctuations are squeezed at the expense of increased photon number (or amplitude) 
fluctuations, as shown in the Figure below.  

 
 
 
7.6 Thermal Radiation: A Statistical Mixture 
 
So far we have looked at quantum states of radiation that could be described using a pure state. One can 
also have states of radiation that are statistical mixtures and are describable only by a density operator. 
One such state is the thermal state. Consider a single radiation mode inside a cavity. We know that at any 
temperature the radiation must be in thermal equilibrium with the walls of the cavity and the walls of the 
cavity must be continuously absorbing from and loosing photons to the radiation mode. Therefore, the 
radiation mode cannot have a fixed well defined number of photons. We assume that the density operator 
for the radiation mode can be written as, 

   nnnP
n



0
̂  

In the photon number state basis, the density operator has no off-diagonal elements but only diagonal 
elements,  nP , that give the probability of there being n  photons in the radiation mode. From statistical 
physics we know that for a canonical ensemble the probability for a system at temperature T  to have 

energy E  is proportional to TKE Be . Therefore, 
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The constant of proportionality is obtained by requiring that,  
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0




n
nP  

which gives, 

    TKTKn BB eenP     1  
The average number of photons in the mode equals, 
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The expression for the average photon number is called the Bose-Einstein factor, and the thermal 
probability distribution, 

    TKTKn BB eenP     1  
is called the Bose-Einstein distribution. Bose-Einstein distribution is sometimes also written in terms of 
the average photon number as, 
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The fluctuations in the photon number are, 

  nnnnn ˆ1ˆˆˆˆ 222   

Note that for the same average number of photons, a thermal state has larger photon number fluctuations 
than a coherent state. Since, the thermal state is a statistical mixture of different photon number states 
(and not a linear superposition of different photon number states), it has no well defined phase.  
 
The thermal or Bose-Einstein distribution played an important role in the development of the quantum 
theory. Max Plank studied the frequency distribution of radiation coming out of a blackbody cavity 
radiator and, in order to explain the experimental observations, postulated that radiation must be emitted 
and absorbed in discrete packets or “quanta” of energy. Max Plank was the first one to show that for a 
thermal state the energy in a radiation mode is distributed according to the Bose-Einstein distribution. 
  


