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Chapter 6: Random Signals and 
Noise 
 

6.1 Basic Concepts in Random Signals 
 
6.1.1 Random Variables 
A random variable x  is characterized by a probability density function )(xPx . The probability that x  

will have a value in an interval dx  centered around x  is equal to dxxPx )( . Normalization requires, 

  



1)( dxxPx   

The mean and standard deviation for x  are defined as, 
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


dxxPxxx x )( of Mean  

 
22 xx deviation Standard  

The sample space of x  is the set of all possible values of x  (i.e. for which 0)( xPx ).  
 
6.1.2 Random Signals 
A random signal )(tx  can be any signal from a set of signals }),(),(),({ 321 txtxtx  which is the sample 
space for the random signal )(tx . The sample space need not be a discreet set. The probability that )(tx  

will equal )(txn  is  )()( txP ntx . The mean of )(tx  is, 

  
n

ntxnx txPtxtxtm )()()()( )(  

When the sample space is not discreet and is parameterized by a continuous variable y  then, 

  )]([)()( )( txPtxdytm ytxyx  

The auto-correlation ),( 21 ttRxx  of )(tx  is defined as, 

  
n

ntXnnxx txPxtxtxtxtxttR )()()()()(),( )(212121  

The cross-correlation between two random signals )(tx  and )(ty  is, 

   
n

nn
m

tytxmnxy tytxPtytxtytxttR 21)()(212121 ),()()()()(),(  

where  )(,)()()( tytxP mntytx  is the probability that )()( txtx n  and )()( tyty m .  

 
6.1.3 Stationary and Ergodic Signals 
Stationary random signals are those whose characteristics do not depend upon the time origin. This 
implies the following, 

a) The mean values are independent of time, i.e. xx mtxtm  )()( . 

b) The auto- and cross-correlation functions are functions of the time difference only, i.e., 
 )()()(),( 212121 ttRtxtxttR xxxx   )()()(),( 212121 ttRtytxttR xyxy   

Most (but not all) signals studied in this course will be stationary. 
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6.1.4 Ensemble Averages Vs Time Averages 
Averages of signals can be done in two ways, 

a) Ensemble averages: Ensemble averages are averages with respect to a probability density 
function. For example,  

        
n

ntxn txPtxtx  

b) Time averages: One can time average a signal as follows, 
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T
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6.1.5 Ergodocity 
When all ensemble averages equal the corresponding time averages the signal is called ergodic. 
Ergodicity implies stationarity but not the other way around. For ergodic signals, 
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T

TT
mdttx

T
txtx 



2

2
)(

1
limit)()(  

And 

 dttytttx
T

tytxtytxttR
T

TT
xy )()(

1
limit)()()()()(

2

2
21212121  


 

Ergodicity implies that each signal in the sample set is representative of the whole set. 
 
6.1.5 Fourier Transforms 
The following definitions of Fourier transforms will be used, 
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Parseval’s Identity: The total energy in a random signal can be written in time and frequency domains 
as, 

    



2
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6.1.6 Power Spectral Density 
The total energy of a real random signal )(tx , given by, 

  





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2
|)(|)( 22 d

xdttx  

can be infinite. So in practice one does not work with total energies of signals but with the signal powers. 
Define a truncated signal )(txT  as, 
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The power in the signal )(tx  is, 
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The ensemble averaged power in the signal is, 
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The integrand in the integral in the limit T  can be interpreted as the power spectral density  
)(xxS  of the signal )(tx , 
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The power spectral density, as the name implies, is the power in the signal per unit frequency bandwidth.   
 
6.1.7 Weiner-Kinchine Theorem 
Weiner-Kinchine theorem relates the power spectral density of a stationary signal to the signal auto-
correlation, 

dttReS xx
ti

xx )()( 




    

In other words, the power spectral density is the Fourier transform of the auto-correlation function. 
 
Proof: We start from, 
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The Figure above shows how the integration region transform when going from the t1-t2 plane to the 1-2 
plane. It follows that, 
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and therefore, 
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Weiner-Kinchine theorem is a very important result and forms the basis of theoretical and experimental 
signal analysis. 
 
Consider a stationary random signal  tx . Then, 

  




 )()( txedtx ti  

It follows that, 
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and, 
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We will often use the above result.  
 

6.2 Fluctuations and Noise: Concepts and Models 
 
In quantum optics two types of noise are most commonly encountered: 

a) Shot noise 
b) Brownian or diffusion noise 

In this chapter, we will look at these noise processes from a classical perspective.  
 
6.2.1 Shot Noise 
Suppose we are looking at a process that consists of a set of discrete events happening randomly in time. 
Suppose the j -th event happens at time jt . At any time t , the rate )(tr  of the events (i.e. the number of 

events happening per unit time) is, 
  

j
jtttr )()(   
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The times jt  constitute the random part. We will assume the following: 

i) The times jt  are completely independent of each other 

ii) The probability that there is an event in a very short time interval dt  is given by dt  where 
  is called the average rate of the process. 

With these two assumptions we can compute the ensemble average of )(tr , 

   



 )()()( tttdtttr

j
j  

The above result illustrates why  is the average rate. We want to find the spectral density of )(tr . We 
know that, 
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So we find the auto-correlation of the function  tr , 
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Noting that the times jt  are completely independent, the second term on the right hand side is 

approximately,  
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We therefore obtain, 
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The spectral density becomes, 
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The noise in )(tr  is  )()()()( trtrtrtn . The auto-correlation and the spectral density of noise 

is, 
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Noise )(tn  having the above characteristics is called shot noise. Shot noise implies a frequency 
independent spectral density with a magnitude equal to the average rate of the process. The noise is not 
present because the events are discreet. The noise is there because the events happen randomly in time 
(although the average rate is ). If a process consists of discreet events then just this does not mean that it 
will have shot noise. Shot noise implies that the timings of different events are random and completely 
independent of each other. If the times jt  get somehow correlated then the noise is not called shot noise. 

For example, consider the process  tw  consisting of events happening at times jt  where jTt j  . The 

events happen after fixed intervals of T . Each event is perfectly correlated in time with the other events. 
There is no randomness and therefore,  

  twjTtjTttttw
jjj

j     )()()()(   

The noise in  tw  is zero.  
 
6.2.2 Poisson Statistics and Shot Noise 
For a process with shot noise, one may ask the question, "what is the probability of having n  events in 
time T ?" Let ),( TnP  be the probability of having n  events in time T . Then, 
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Solution of the above differential equation with the boundary condition 0)0,( nTnP   is, 
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n
e

n

T
TnP  

!
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),(  

When the statistics of events are according to the expression above, we call the process a Poisson process 
and the statistics are called Poisson statistics. The number of events in time T  is, 

 dtttdttrN
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The ensemble average number of events in time T  is, 
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This can also be confirmed from the probability distribution found above, 
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The standard deviation in the number of events in time T  is, 

   2222
TTTTT NNNNN   

The first term is, 
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Therefore, 
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For a process with shot noise, the standard deviation in the number of events during any time interval is 

equal to the mean. Of course, we can derive TN  and 
22

TT NN   directly from )(tr  as well. Since 

)(tr  is the rate of events, we can write, 
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where ot  is the time from where we start counting. The ensemble average value of TN  is, 
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And, therefore, TTT NTNN  22  as before. 

 
6.2.3 Partition Noise 
Here we will consider noise introduced in particle splitting. Consider a stream of particles arriving at a 
splitter as shown below. The splitter decides whether each particle is transmitted in the forward direction 
or reflected in the downward direction. The decision is random but on the average the probability of 
forward transmission is   and the probability of reflection is  1 .  
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The incident particle rate is )(ti , the "reflected" particle rate is )(tr  and the rate of particles transmitted in 

the forward direction is )(tf . The average rates satisfy, 
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Let the noises be, 
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If the splitter added no noise to the outgoing particles we would have had the following relations, 
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But (1) and (2) above are not correct since only the average of  tf  equals   times the average of  ti . 
Let, 
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where jf  is a random variable that can take two values, 1 and 0, with probabilities   and ( 1 ), 

respectively. There are two sources of randomness in the above expression. The factors jf  are random 

and the times jt  of arrivals of the particles at the splitter are also random. The ensemble average of jf  is, 
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It should also be noted that jf  and jt  are independent random variables. Therefore, 
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In evaluating the above expression, we have first performed ensemble averaging with respect to the 
random variables jf . The auto-correlation of )(tf  is, 
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We first perform ensemble averaging with respect to the factors jf , 
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The part in curly brackets is just )(iiR . Therefore, 
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The first term on the right hand side is,  
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


 

Since,  

  )()()()( tftftftnf  

we have, 

 
      

     



ii

ff

nn

iiffnn

R

RRR

2

2222

1             

1)()(




 

The noise spectral density in the transmitted particle stream is, 

 )()1()( 2  iiff nnnn
SS   

The noise spectral density of the transmitted particles consist of two parts: i) the noise in the input particle 

stream multiplied by 2 , ii) the noise added by the splitter which goes as )1(   . A similar analysis 
shows that, 
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iirr nnnn

iirr

iirr

SS
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RR







 

Let’s look at, 

 )()1()( 2  iiff nnnn
SS   

Case (i): Suppose   is very small such that )(2  ii nn
S  can be neglected. Then, 

  )(ff nn
S  

But   is the average rate at which particles go forward. So in the limit 0 , the output stream has 
shot noise irrespective of the noise in the input stream. 
Case (ii): Suppose the incident stream has shot noise i.e. )(iinnS  is equal to  , then, 

 








)(

)1()( 2

ff

ff

nn

nn

S

S
 

If the input stream has shot noise then the output stream also has shot noise. 
Case (iii): If 1 , then )()(  iiff nnnn

SS   which makes sense since if no splitter is present, and no 

particle is reflected, then the noise in the incident and forward streams should be the same. 
 
 

6.3 Introduction to Langevin Equations 
 
6.3.1 Brownian Velocity 
The best way to introduce Langevin equations is to look at a particle undergoing Brownian motion. 
Consider a particle of mass m  in a gas (or a liquid) undergoing random Brownian motion. The particle is 
being kicked around randomly. The velocity of the particle is )(tv  which can be considered a random 
signal. We limit ourselves to one dimensional Brownian motion. The surrounding medium (other gas or 
liquid particles) exert a frictional force on the test particle so that any initial velocity given to the particle 
is quickly lost as a result of scattering with other particles. The equation for the particle velocity )(tv  can 
be written as, 

 )(
)(

tv
dt

tdv   

Here,   describes the damping of the particle velocity due to collisions with other particles. The above 
equation cannot be a complete description of the particle motion since it gives, 

 tetvtv  )0()(  
This implies that, 

 tetvtv 222 )0()(   

In the limit t , the particle velocity and, therefore, energy both become zero. We know that the 
average particle energy is given by the equipartition theorem of statistical physics, 

 
m

TK
tvTKtmv B

B  )(
2

1
)(

2

1 22  

One way to fix the equation for the motion of the particle is to add a force that describes the kicks the 
particle receives during collisions with other particles, 
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 )()(
)(

tFtvm
dt

tdv
m    

The force  tF  is a random function. We require that the kicks at different times be completely 
uncorrelated and random in direction. In mathematical language, we require the ensemble average values 
of  tF  and its auto-correlation to obey, 

 
)()()(

0)(

2121 ttAtFtF

tF






 

A-priori we don't know the value of A . We will determine A  by enforcing the equipartition theorem. We 
start from the equation, 

 
m

tF
tv

dt

tdv )(
)(

)(
   

The solution is, 

  
t

ttt dtetF
m

etvtv
0

1
)(

1
1)(

1
)0()(   

 










t
tt

t

ttt
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t

etFdt
m

e
tv

etFtFdtdt
m

etvtv

0

)(
11

)2(
21

0
2

0
12

222

1

21

)()0(2

)()(
1

)0()(






 

We perform an ensemble average on both sides, 

 

 

 
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
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etFtFdtdt
m

etFtVdt
m

e
etvtv

0 0

)2(
21212
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




 

In steady state, when t  can be assumed to be large, the only term that survives is the last term, 

 

.
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)(
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)(2
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










  













 

Since according to the equipartition theorem, 

  
m

TK
tv B)(2  

we must have, 

 TKmA
m

TK

m

A
B

B 


2
2 2

  

We therefore arrive at the following description of the velocity of a particle undergoing Brownian motion, 

 
m

tF
tv

dt

tdv )(
)(

)(
   

where the force  tF  has a zero mean and the following auto-correlation function, 
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  )(2)()( 2121 ttTKmtFtF B    

The equation for the particle velocity is an example of a Langevin equation and )(tF  is a Langevin noise 
source. In most cases, the auto-correlation function of a Langevin noise source is a delta function in time 
and its magnitude is set by fundamental physical considerations irrespective of the microscopic details of 
the system. For example, we could have derived the factor TmKB2  by a detailed microscopic 
calculation but it was easier to use a fundamental physical principle (i.e. equipartition theorem). The 
Langevin equation for the particle velocity is also an example of the "fluctuation dissipation" principle in 
statistical physics according to which every source of dissipation must also introduce fluctuations in a 
physical system.  
 
Spectral Density: The spectral density of )(tv  can be derived in two ways: 

i) First find )(vvR  and then Fourier transform to obtain )(vvS . 

ii) The second method to obtain )(vvS  is to work directly in the frequency domain. 
Both the above methods are illustrated below.  
 
Start from,  

  
t

ttt etF
m

etvtv
0

)(
1

1)(
1

)0()(   

The auto-correlation of the velocity is,  
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As both t   and t   become large, the correlation function becomes, 

   
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Some care needs to be exercised in performing the double integral above:   

a) Suppose '" tt   then we can do the 
"

0
2

t
dt  integral first and the result is, 

   
)'"(

)"'()'"(
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b) Suppose "' tt   then we can do the 
'

0
1

t
dt  integral first, 
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Combining (a) and (b), one gets, 

 |"'|)()( ttB e
m

TK
tvtv    

In the limit of large 't , "t  (when all initial correlations have died out) the random signal )(tv  is stationary 

(since 0)( tv  and )"()'( tvtv  depends only on the time difference )"'( tt  ),  

 ||)(   e
m

TK
R B
vv  

The spectral density of )(tv  is, 
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The forces acting on the particle are delta-correlated (meaning their correlation function is proportional to 
a delta function in the time difference) but the particle velocity "remembers" the kicks it gets on a time 
scale of the order of 1 . Therefore, the velocity-velocity correlation function is not delta-correlated but 
looks like, 

 
and decays on a time scale 1 . 
 
The second method to obtain )(vvS  in steady state is to work directly in the frequency domain. Define, 

 




 )()( tFedtF ti  

Then, 

  0)()(  



tFedtF ti  

and, 



Rvv()



Quantum Optics for Photonics and Optoelectronics (Farhan Rana, Cornell University) 
 

14 

  

 )(22)()(*

2

)(2

)()()()(*

2121

)(
1

2121

212121

121

2211

2211













































TKmFF

edtTKm

tteedtdtTKm

tFtFedtedtFF

B

ti
B

titi
B

titi

 

Therefore, functions delta-correlated in time are also delta-correlated in frequency. Start from, 
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and take the Fourier transform of both sides, 
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The spectral density )(vvS  is, 
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After inverse Fourier transforming, we can find the correlation function as well, 

   




 ||

2
)()( 


 e

m

TKd
eSR Bti

vvvv  

Working in frequency domain is often easier, and we don't have to deal with process of taking limits of 
large times in order to throw away the initial correlations. 
 
6.3.2 Diffusive Motion (Random Walk) 
The diffusion of a particle making random jumps is also described by a Langevin equation, 

 )(
)(

tW
dt

tdx
  

where, 
 0)( tW  

and,  
 )(2)()( 2121 ttDtWtW    
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where D  is the diffusion coefficient. The particle motion can also be described by a time-dependent 
probability density function ),( txP  that gives the probability of finding the particle at position x  at time 

t  subject to some initial condition. ),( txP  obeys the standard diffusion equation, 

 
2

2 ),(),(

x

txP
D

t

txP









 

The Langevin equation and the diffusion equation are equivalent descriptions of the same process. 
Consider, 

 )(
)(

tW
dt

tdx
  

Since there is no dissipation, initial conditions cannot be ignored. The solution can be written as, 
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The particle has an equal chance of diffusing in any direction, so the ensemble average of )(tx  equals 

)0(x . We first find the equal-time auto-correlation of the particle position as follows,  
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This gives, 
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The ensemble average of the square of the displacement of the particle from its initial location increases 
linearly with time. This property is a signature of diffusion. Next, we find the more general auto-
correlation function. We have,   

 
1

0
1 )()0()(

t
dttwxtx  

 
2

0
2 )()0()(

t
dttwxtx  

Therefore, 
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The process )(tx  is obviously not stationary.  
 
We can get the same results as above from the diffusion equation, 
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The solution, subject to the initial condition, ))((),( oo txxtxP   , written as )),(|,( oo ttxtxP  for 

ott   is, 
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This means,  
0)()( 0  txtx   

and,  
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Now consider the diffusion equation in the frequency domain, 
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Spectral density that goes as 21   is a signature of a diffusion process. If you see the spectral density of 

a signal  ty  going as 21   then it means that   ||)()( 21
2

21 tttyty  . Since )(tx  is not 

stationary, and )()( 21 txtx  is not a function of 21 tt  , it makes little sense to take the inverse Fourier 

transform of )(xxS  for a diffusion process.  
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6.4 Phasor Representation of Signals and Signal Quadratures 
 
6.4.1 Signal Quadratures and Phasors 
Consider a narrowband real signal with spectrum centered near o , as shown below.  

 
Any real signal )(ty  with bandwidth centered at frequency o  can be written as, 
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Where   is large enough so that )(y  is zero outside the bandwidth   centered at o . One can remove 
the fast time dependence from inside the integral, 
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and write, 
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The above relation expresses )(ty  as a product of a slowly time varying function )(tx  and a rapidly time 

varying complex exponential that has the center frequency of )(ty , 

  ti oetxty  )(Re)(  

Since )(tx  is complex, we can write, 
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Then, 
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)(1 tx  and )(2 tx  are called the quadratures of the signal )(ty . Usually, it is easier to deal with the slowly 

varying complex signal )(tx  then with the real signal )(ty . One can represent )(tx  as a vector (called 
phasor) in the complex plane, as shown below, and the quadratures are the orthogonal components of the 
phasor along the x-axis and the y-axis.  

y() 





 
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6.4.2 Generalized Quadratures 
More often one is not interested in the components of the phasor along the x-axis or the y-axis but along 
axes that are rotated with respect to the x-y axes. Suppose we are interested in the components of the 
phasor that are along axes that are rotated at an angle   with respect to the x-y axes, as shown below.  

 
One can write )(tx  as, 

     








iii etxitxetxetxtx )()()()()( 2
2

2 


   

)(tx  and )(2 tx    are the two orthogonal components of the phasor )(tx  along the rotated axes. 

 
 
6.4.3 Examples 
Case (i): Suppose, 

 i
oextx )(  

Here, a is a complex constant. We can write the signal as,     
    sincos oo xixtx   
It follows that, 

 

 
 

   














txtxty

eex

etxty

oooo

tii
o

ti

o

o

sincos)(

Re

)(Re)(

 

 
Case (ii): Suppose, 
 )()( 1 txtx o   

where ox  and )(1 t are real and oxt )(1 . Then, 

x(t) 

x2(t) 

x1(t) 

x(t) x+/ 2(t) 

x(t) 

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ttx

ttxty

oo

o




cos))((

cos)()(

1


 

)(1 t  thus represents amplitude modulation of the signal )(ty , as depicted below.  

 
Case (iii): Suppose, 
 )()( 2 tixtx o   

where ox  and )(2 t  are real and oxt )(2 . Then, 

 tttxty oo  sin)(cos)( 20   
The amplitude of the phasor is, 

 ooo xxtxtx  22
2

22 )(|)(|   

So a small imaginary part does not affect the amplitude of the phasor. We can also write, 

 

 

   






























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x

t
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x

t
txty

ex

x

t
ixtixtx

o

2

)(

2
2

cos

)(
1)()(

2







                

Therefore, )(2 t  represents phase modulation of the signal )(ty , as depicted below.   

 
 
Case (iv): If we have two zero-mean real random signals )(1 t  and )(2 t , and,

)()()( 21 titxtx o   ,  where ox  is real and oxtt )(),( 21  , then )(1 t  describes the in-phase 

fluctuations or the amplitude fluctuations in the signal )(ty  and )(2 t  describes the out-of-phase 

fluctuations or, simply, the phase fluctuations in the signal )(ty . The tip of the phasor will be randomly 

x(t)=xo 

1(t) 
Case (ii): Amplitude modulation 

x(t)=xo 2(t) 

Case (iii): Phase modulation 
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moving in time (for example, the tip is shown to be moving in time in the shaded region in the Figure 
below). The shaded region is called the “error region.”   

 
Case (v): Suppose,  

 )()( textx i
o     

where ox  is real and )(t  is complex and oxt )( . It is not obvious what effect does )(t  have 

unless one writes the complex signal )(t  using the generalized quadratures, 

   


  ii
o eitextx 2)(   

Now it is clear that )(t  and )(2 t   represent amplitude and phase modulations, respectively, as 

shown below.  

 
One can write, 

 

       
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
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The signal  ty  is, 

     








 

o
oo x

t
ttxty

2
cos)(





  

The amplitude and phase modulations in  ty  are now obvious.  

x(t)=xo 

1(t), 2(t) ≠ 0 
Case (iv): Random amplitude and 
phase fluctuations 

Error region 

xo e i 

+/ 2(t) 

(t) 




