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Chapter 5: Quantization of Radiation 
in Cavities and Free Space 
 

5.1 Classical Electrodynamics  
 
5.1.1 Classical Cavity Electrodynamics 
Maxwell’s equations for electromagnetism are, 
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Here,  r  is the relative dielectric constant. Consider fields inside a cavity. We need to find the 
eigenmodes of the radiation inside a cavity. The cavity is assumed to be absolutely lossless. We also 

assume that 0),( trJ


 and 0),( tr


 .  

 
From Maxwell’s equations one can drive the wave equation, 
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The above equation can be solved to obtain the confined radiation modes, and their frequencies, inside the 

cavity. It is easier and better to work with the vector and scalar potentials, ),( trA


 and ),( tr


 , instead of 

),( trE


 and ),( trH


 fields. These potentials are introduced below.  

 
5.1.2 Vector and Scalar Potentials 

We introduce vector and scalar potentials ),( trA


 and ),( tr


  to describe ),( trE


 and ),( trH


 fields, 
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Since 0),()(  trEro


  (no free charges), 

Cavity 
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5.1.3 Gauge Transformations and Gauge Fixing 

The fields ),( trE


and ),( trH


don’t change if we make the following transformations, 
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where ),( trF


 is any scalar function. So there is some degree of freedom in the choice of ),( trA


 and 

),( tr


 . In other words, the choice of ),( trA


 and ),( tr


  is not unique. One can impose an additional 
condition on the potentials to make them unique. In non-relativistic electrodynamics, one imposes the 

additional condition 0),()(  trAro


 .  Introduction of a condition like this is called “gauge fixing”, 
and this particular choice of gauge is called the coulomb gauge. In the coulomb gauge, 
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The electric field can be divided into two parts, 

 ),(),(),( trEtrEtrE TL


  
In the coulomb gauge,,  
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It follows that, 
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 0),()(  trEr To


  

),( trEL


 is called the longitudinal electric field and its source is the charge density ),( tr


  (whether static 

or time dependent). ),( trET


 is called the transverse electric field and its source is the time-dependent 

current density ),( trJ


. The vector potential can also be divided into two parts, 

 ),(),(),( trAtrAtrA TL


  

In the coulomb gauge 0),( trAL


 and the vector potential is entirely transverse. In non-relativistic 

quantum electrodynamics, ),( trET


 is associated with “photons”.  In this Chapter, since ),( tr


  will 

almost always be zero, ),( trEL


 will also be zero, and ),( trE


 should be understood to be ),( trET


. In 

the coulomb gauge (with 0),( tr


  and 0),( trJ


), we have, 

 

),(),(

),(
),(

trAtrH

t

trA
trE

o












 

Maxwell’s equations give, 
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Note that ),( trE


 and ),( trA


 satisfy the same wave equations.  
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5.1.4 Cavity Eigenmodes and Eigenvalues 
To proceed further, we need to find the eigenmodes of the operator that appears in the wave equation, 
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Let these eigenmodes be )(rUn


 and let the corresponding eigenvalues be 22 cn . Therefore,  
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These eigenfunctions must also satisfy the requirement that 0)()(  rUr no


 , which follows from the 

coulomb gauge condition, 0),()(  trAro


 . We will assume that the eignemodes can be chosen to be 
completely real functions.  
 

Orthogonality Relation for the Eigenmodes: Consider two different eigenmodes, )(rUn


 and )(rUm


. 
These satisfy, 
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Take the dot product of both sides of the first equation with )(rUm


 to get, 
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Using the vector identity, 

  )()()()( CACACA


  
and integrating over all space we get, 
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Integrate by parts twice on the left hand side to obtain, 
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Therefore, if nm    then, 

  0)()()(3 rUrUrrd nm


    (5) 
Therefore, eigenvectors corresponding to different eigenvalues are orthogonal in the sense of (5) above. 

If )(rUn


is normalized such that,  

   1)()( 3rdrUrU nn


 
then, 

   nmnnm rUrUrrd  )()()(3 
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where n  is the average relative dielectric constant seen by the mode )(rUn


.  

 
5.1.5 Field Expansion using Eigenmodes 
Since the eigenmodes form a complete basis set in the space of all transverse vector fields, one can 

always expand any transverse vector field, and in particular ),( trA


, in terms of these eigenmodes, 
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Substituting the above expansion in the wave equation we get, 
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Multiplying both sides by )(rU j


, and integrate over all space, we get, 
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The above equation has the solution, 
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Or, equivalently, in complex time-harmonic notation, 
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5.1.6 Field Hamiltonian 
The classical expression for the field energy is, 
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Note that, 
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If one defines )()( tqtp mm   then, 
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From Maxwell’s equation we had found, 
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So the variables )(tpm  and )(tqm  satisfy the equations, 
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Comparing the above equations with those for a simple harmonic oscillator, we see that they are identical!  
 
  

5.2 Cavity Quantum Electrodynamics  
 
5.2.1 Quantization of Cavity Fields 
For classical fields we derived the following expression for the energy, 
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And the dynamics are given by, 
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We need a fundamental relation (not derivable from any other theory) to quantize the field. Note that each 
field mode behaves like a simple harmonic oscillator (SHO). Not just that the expression for total energy 
matches that of a SHO, but the dynamics are also similar. So we can try quantizing by the following 
steps: 
(a) Let the dynamic variables )(tqm and )(ˆ tpm  become operators )(ˆ tqm  and )(ˆ tpm  

(b) Let the equal-time commutation relation between )(ˆ tqm and )(ˆ tpm be   itptq mm )(ˆ),(ˆ  

(c) For different modes let the commutation relations be   0)(ˆ),(ˆ tptq nm  
The Hamiltonian operator of the field becomes, 
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As in the case of SHO, define creation and destruction operators  tamˆ  and  tam
ˆ  for each field mode 

as, 

 

      

      tpitqta

tpitqta

mmm
m

m

mmm
m

m

ˆˆ
2

1

ˆˆ
2

1ˆ





 








 



Quantum Optics for Photonics and Optoelectronics (Farhan Rana, Cornell University) 

6 

It follows that,  

      mnnm tata ˆ,ˆ  
and,  
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The operator time dependence in the above expressions should be interpreted in the Heisenberg sense. So, 
for example, the Hamiltonian in the Schrodinger picture would be, 
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where mn̂  is the number operator for the mode m . 

 
5.2.2 Energy Eigenstates and Eigenenergies 
Since all radiation eigenmodes behave independently, we consider one mode only. The Hamiltonian for a 
single mode is, 
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Let the eigenstates of this Hamiltonian be mn| . Following the discussion in Chapter 4, we have, 
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n  is an energy eigenstate with energy 
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(ii) The energies of different ergenstates are separated by multiples of m . The eigenenergies are, 
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(iii) The ground state 
m

0  has energy m2
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5.2.3 The Photon 
On quantizing the electromagnetic radiation we see that the energy of a single mode of the field with 
frequency m  can only take on values separated from each other by multiples of m  (i.e. the mode 

energy can only be increased or decreased in multiples of m ). This is in contrast with classical 
electrodynamics where a radiation mode can take any energy value by increasing or decreasing the field 
amplitude in a continuous fashion. This minimum amount of energy (i.e. m ) is associated with the 
term “photon”. A state with a single photon is the smallest possible excitation above the ground state 

m
0  of a field mode. A state with a single photon is 

m
1  and has energy 
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with two photons is 
m

2  and has energy 
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1
2 . A state with n  photons is 

m
n . The 

ground state m0|  of a field mode has no photons but still has energy equal to m2

1
.  

 

The operator mmm aan ˆˆˆ   is called the number operator for the mode m because it gives the number of 
photons in a state,  
 

mmm nnnn ˆ  


mâ  and mâ  are called photon creation and destruction operators because they increase or decrease the 

number of photons in a state, 
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The state 
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n  can be written as, 
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The states 
m

n  are called photon number states since they are eigenstates of the number operator 

 mmm aan ˆˆˆ  .  
A photon is not a particle and a photon is not a wave. A photon is just the smallest possible energy 
excitation of a field mode.  
 
5.2.4 Multimode States 
A multimode quantum state with 3 photons in mode m , 4 photons in mode n , 5 photons in mode p  , is 
written as, 
 pnm  5|4|3||  

So, 
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Or sometimes |  may be written as, 

  5,4,3|| pnm nnn  

The vacuum state 0|  means the ground state of all modes, 

 ...........0|0|0|0| 321   
If we have a state with 3 photons in mode 2 then,  
 ..............0|0|3|0|| 4321   
The above notation is too cumbersome. Instead one typically writes, 
 23||   
One only writes down the states that have non-zero photon numbers or are of interest in some other way. 
Few examples are given below.  
 
(1) A state with p  photons in mode m , 
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(2) A state with one photon in mode m  and one in mode n , 

   1,1|1|1|0|| nmnmnm nnaa  
(3) A state which is a linear superposition of one photon in mode m  and me in mode n , 
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Completeness Relation for the Photon Number States: A full blown completeness relation for photon 
states look like 
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But in any practical problem one is usually dealing with photons in one or a few modes. So for one mode 
(say the mode m) the completeness relation becomes, 
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Orthogonality Relation for the Photon Number States: We need to find the value of the inner product 

nm pp  . Since the corresponding mode spatial functions )(rUm


 and )(rU n


 are not orthogonal in the 

sense   nmnm rdrUrU 


3)(),( , it is not immediately obvious what 
nm pp   should be. But since 

m
p  and 

n
p  are eigenstates of a Hermitian operator (i.e. Ĥ ), we have,  
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5.2.5 Time Development of Creation and Destruction Operators 
The time development of the creation and destruction operators follows from the Heisenberg equation, 
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5.2.6 Field Operators 

The fields are physical observables and are therefore represented by operators. We can write ),(ˆ trA


 and 

),(ˆ trE


 in Heisenberg picture using, 
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Note that all field operators are Hermitian.  
 

Now consider a quantum state with a billion photons in mode m , i.e 
m

mn
99 1010  . Let’s 

find the average electric field for this state, 
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There are a large number of photons in the state 
m

910  but it has a zero average value for the 

electric field. Therefore, the photon number state is likely not what emerges from, say, your cell phones.  
 
5.2.7 Vacuum Fluctuations  
The ground state of a mode 

m
0  has energy 2m  even though there are no photons in this state. The 

energy is due to what are called vacuum fluctuations; in the ground state, the electric and magnetic fields 
have zero average values but averages of the squares of the fields are not zero. In fact, restricting 
ourselves to just one mode, a direct computation shows, 

mmom trHtrHtrEtrErrd  
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The total vacuum energy, including contributions from all modes, is then 
m

m 2 , which is infinite. 

This infinity is not a problem since in experiments only the differences in energies are measured and not 
absolute energies.  
 
We don’t know whether the sum 

m
m 2  is valid for values of m  all the way up to  . When m  

becomes very large, the modes )(rUm


 vary very fast in space and over length scales comparable to or 
shorter than the Planck scale of 10-33 cm. Nobody knows if quantum electrodynamics is valid at such 
short spatial scales. 
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5.3 Electrodynamics in Free Space 
 
5.3.1 Classical Electrodynamics in Free Space 
Maxwell’s equations in free space are, 
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The above equations result in the wave equation, 
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Assuming, as before, coulomb gauge and all fields to be transverse (divergence free), let, 
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So the wave equation in free space becomes, 
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5.3.2 Free-Space Eigenmodes and Eigenvalues 

We need to find eigenmodes of the operator 2 . Let these be  rUk


  with eigenvalues 22 c
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 , i.e., 
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The eigenvectors must also satisfy the coulomb gauge condition, 
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The eigenvectors can be written in terms of plane waves, 
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The eigenmodes are normalized in very large box of volume V . All physical results will turn out to be 
independent of V . The right hand side above represents a plane wave propagating in the direction of the 
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vector k


 and with the vector potential (and the electric field) polarized in the direction of the unit vector 

)(ˆ k


 . Note that, 
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Therefore, the eigenvalue of the plane wave solution is,  
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Since k
  does not depend on the direction of k


 but only on its magnitude, we will write it as k . The 

constrain   0 rUk
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 . The direction of field polarization is perpendicular to the 

direction of propagation of the plane wave given by the vector k


. For each direction k
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independent and mutually orthogonal directions perpendicular to k
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The plane wave eigenmodes form a complete set in the space of all transverse vector fields. Therefore, the 
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Keep in mind that since k


 can be pointing in any direction, the unit vectors )(ˆ1 k


  and )(ˆ2 k


  have no 

simple relationship with the Cartesian unit vectors x̂ , ŷ  and ẑ . 
 
5.3.3 Periodic Boundary Conditions 
Free space is infinite. For the purpose of calculations, it is useful to assume that free space is a large box 

of side L  on each side, and volume  V  equal to 3L . We also assume that each facet of that box is 
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connected with the opposite facet. Since the eigenmodes must be single-valued everywhere, the following 
periodic boundary conditions must hold, 
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Thus, the vector k


 can only have certain discrete values. There is only one such allowed value in a cube 

of volume  32 L  in k-space. Therefore, noting that there are  32V  different allowed k


 values per 

unit volume in k-space, the summation over k
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Orthogonality Relation for the Eigenmodes: The orthogonality relation for the eigenmodes is, 
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Sometimes one is interested in the Cartesian components of  trA ,
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These can be found as follows,  
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Finally, the electric and magnetic fields are, 
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5.3.4 Time Development 

We can plug the expansion for  trA ,


 in the equation, 
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to get, 
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Multiplying by  kεe j
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ˆ.  on both sides, integrating over all space, and using the orthogonality relation 

for the modes, we get, 
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5.3.5 Field Energy 
The energy of the field can be found as follows, 
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First we carry out the integration over all space. From the exponentials one obtains a factor of ',kkV 
  

that can be used to get rid of the integration/summation over 'k


, and one can replace 'k


 everywhere by 
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 . Also, note the following relations, 
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The final result is,  
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The expression for energy has complex quantities. So it is a little different from what you have seen in the 
past. If one defines, 
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and the expression for the energy becomes, 
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5.3.6 Field Momentum 
In classical electromagnetism the momentum of the electromagnetic field is,  

      trHtrErdP oo ,,3 
  

Using the relation, 
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one obtains, 
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5.3.7 Field Angular Momentum  
Classical electromagnetic fields have a well-defined angular momentum. Recall that the angular 
momentum of a particle with momentum  tp  and position vector  tr  with respect to a point or


 is given 

as, 

       tprtrtL o


  
The classical expression for the momentum of the electromagnetic field is (from previous Section), 

      trHtrErdP oo ,,3 
  

The classical expression for the angular momentum of the field is, 

         trHtrErrrdJ ooo ,,3 
  

Usually the point of reference is the origin (given the homogeneity of free space) and the above 
expression is written as, 

      trHtrErrdJ oo ,,3 
  

 
 

5.4 Quantum Electrodynamics in Free Space 
 
5.4.1 Quantlzation of Radiation in Free Space 
The first step in the quantization of any system is the promotion of observables to operators and the 
imposition of commutation relations. In quantum electrodynamics the observables are the field operators, 

 trE ,ˆ   and  trH ,ˆ 
, and these operators must therefore be Hermitian. In classical electromagnetism, 
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The above conditions were necessary for the fields to be real. In quantum electrodynamics, the field 
operators will be Hermitian provided, 
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To quantize, we impose the following equal-time commutation relations, 
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It follows that, 
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We define creation and destruction operators as before,  
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5.4.2 Field Hamiltonian 
The field energy can be written as, 
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and in terms of the creation and destruction operator it becomes, 
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The vacuum energy is, 
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The vacuum energy density is therefore, 
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5.4.3 Time Development of Creation and Destruction Operators 
The time development of the creation and destruction operators follows from the Heisenberg equation, 
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and, 
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5.4.4 Field Operators 

The field operator  trA ,ˆ   is, 
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and, of course, the field operator is Hermitian,    trAtrA ,ˆ,ˆ 
 . The operators for the electric and 

magnetic fields are, 
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5.4.5 Energy Eigenstates and Photons 

The energy eigenstate with m  photons in mode  jk,


 is 
jk

m
,
 , so that, 
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5.4.6 Momentum of a Photon 
The field momentum operator is, 
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Using the eigenmode expansions for the field operators one gets, 
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The only non-zero terms are, 
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In the Schrodinger picture, 
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Now we can check if the energy eigenstates (i.e. the photon number states) are also momentum 
eigenstates. We need to evaluate, 
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The result is, 
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Therefore, the momentum associated with a single photon in the radiation mode with wavevector k


 is 

k


 .  
 
5.4.7 Angular Momentum and Spin of a Photon 
The classical expression for the angular momentum of electromagnetic field is, 

       trHtrErrdJ oo ,,3 
  

The above expression consists of two contributions, 
a) The orbital angular momentum 
b) The intrinsic angular momentum or the spin angular momentum 
These two parts are neither easily separable nor separately conserved. The reason is that spin angular 
momentum for a massive particle, say an electron, is clearly defined by looking at the angular momentum 
in the rest frame of the particle. Massless particles, like photons, have no rest frame and this procedure 
does not work. Nevertheless, if one looks at radiation states, like plane waves (with ideal infinite phase 
fronts), that are unlikely going to have any orbital component, then the angular momentum found using 
the expression above can tell us something about the intrinsic angular momentum of radiation. To see this 
more clearly we proceed as follows. We assume that the fields are transverse (i.e. divergence free). We 
start from the classical expression for the angular momentum above and perform a few manipulations,  
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The first part is usually identified with the intrinsic or the spin angular momentum and the second part 
with the orbital angular momentum. It is tempting to write, 

 LSJ


   
However, as mentioned above, this decomposition runs into problems. For plane waves the second part 
can be shown to be zero. So for plane waves we will take the expression for the intrinsic angular 
momentum to be, 

    trAtrErdS o ,,3 
   

Upon quantization, the fields become operators given by, 
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Using the above expressions, the operator S
̂

 becomes,  
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Using a convenient convention for the unit polarization vectors, 
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we obtain, 
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In the Schrodinger picture, 
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The operator S
̂

 is diagonal in the wavevector indices but not diagonal in the polarization indices. Recall 

that the operator  ka


1
ˆ  creates a single photon with wavevector k


 and with linear polarization in the 

direction of the unit vector  k1̂ . Similarly,  ka


2
ˆ  creates a single photon with wavevector k


 and with 

linear polarization in the direction of the unit vector  k2̂ . This means that a photon in a linearly 

polarized plane wave state is not in an eigenstates of S
̂

. We define two new destruction (and 
corresponding adjoint creation) operators as follows, 
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Note the following commutation relations, 
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The operator  kaR
ˆ  on the creates a single photon with wavevector k


 in a linear superposition of 

polarization vectors  k1̂  and  k2̂  with a 90-degrees phase difference between the two polarizations. 

In fact,  kaR
ˆ  creates a single photon that is right-hand circularly polarized. Similarly,  kaL

ˆ  creates a 

single photon that is left-hand circularly polarized. In terms of these new operators, the expression for S
̂

 
becomes, 
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In the Schrodinger picture, 
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The operator S
̂

 is now diagonal in all indices. Consider a single photon state   0ˆ kaR
 . It is 

eigenstate of the operator S
̂

 with eigenvalue k̂ ,  

  kS ˆˆ



  

We say that the angular momentum of a right-circularly polarized single photon plane wave state is k̂ . 

Similarly, the state   0ˆ kaL
  is an eigenstate of S

̂
 with eigenvalue k̂  and therefore the  

angular momentum of a left-circularly polarized single photon plane wave state is k̂ . The direction of 
the angular momentum is always along the axis of propagation. The spin of a particle is related to its 
intrinsic angular momentum and is measured in units of  . Therefore, the spin of a photon can have two 
values, +1 or -1, and these correspond to photons with right-circular or left-circular polarization states.    
 
5.4.8 Position of a Photon 
For photons position is not an observable, and there is no position operator for photons, and there are no 
position eigenstates. Any attempt to define position eigenstates for photons ends up violating Lorentz 
invariance.  In fact, the same difficulty arises in the case of other massive particles, such as electrons, but 
for a massive particle one can always find a rest frame in which the particle is at rest (or moving very 
slowly compared to the speed of light) and then one can define approximate position eigenstates and the 
position operator in a non-relativistic setting. But photons, being massless, are always travelling at the 
speed of light and therefore no position operator can be rigorously defined. However, one may define the 
position of a photon in a measurement sense and ask the following question, “If there is a photon in an 

eigenmode  rUm


 of the radiation, what is the probability of detecting the photon at location r


 at time t  

in a time interval t  when a photo detector is placed at r


.” We will discuss these questions in more 
detail when we discuss photon detection in later Chapters. Here we present a discussion of what goes 
wrong when trying to localize a photon in the detection sense.  
 
Consider the single photon state, 
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The photon is created in a “plane wave state” and is therefore spread out in space. What if we create a 
photon in a superposition of plane wave states to make it more localized? With this as the motivation, 
consider the following state, 
  
 
 

The operator  'rb
  creates a single photon in a maximal superposition of plane wave states and with a 

polarization in the direction of the Cartesian unit vector bê . The question arises how localized is the 

photon at the location 'r


. If it is really localized at 'r


 then we could perhaps write a position eigenstate 
for the photon as, 

   0'' rr bb

   

One way to answer the above question is to try destroying the photon at a different location r


 and in 
polarization along aê . Physically, this action corresponds to detecting a photon at location r


 and with 

polarization along aê , given the state   0'rb
 . So we evaluate the following matrix element, 

    
baba rrrr '0'0


  

If the photon created by  'rb
  is localized, and position eigenstates exist for photons, then we should 

expect the answer to look like, 
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We evaluate this matrix element below, 
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The answer  'rrab


  is called the transverse delta function. It is not localized like a delta function but 

is spread out. One can write,  
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The reason we did not just get  '3 rrab


 , which would correspond to our expectation for position 
eigenkets, is that the eigenmodes are not scalars but vectors. One can superpose plane waves and produce 
a delta function but vector plane waves cannot be superposed to produce a delta function. This argument 
shows that photons cannot be localized. 
 
5.4.9 Field Commutation Relations 
The equal-time commutation relations among the fields express the possibility of simultaneous 
measurements. Consider first the electric and magnetic fields, 
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Let, 
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The equal-time commutation relations between these two components are, 
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Noting that for any two vectors, the cross-product can be written as, 
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a BABA 
,


 

where abc  is the Levi-Civita symbol with the property that  1123   and abc  picks a negative for any 

permutation of the indices (e.g.  1321   and 1231  ), one can write, 
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The result is a derivative of a delta function. The symbol c  stands for derivative with respect to the “c” 
Cartesian component (“c” could be x, y, or z). The result shows that same components of the electric and 
magnetic fields commute at all points but different components of the electric and magnetic fields do not 
commute.  
 
Other interesting quantities are the field commutation relations at different locations and at different 
times, 

     ','ˆ,,ˆ trEtrE ba


 
Such commutation relation show whether accurate simultaneous measurements on fields at different 
locations and times are possible. Of course, one would expect in light of relativity that if field 
measurements are made at locations far enough such that no signal could travel in the time interval 
between the measurements then such measurements should not affect each other. In other words, all field 



Quantum Optics for Photonics and Optoelectronics (Farhan Rana, Cornell University) 

22 

operators must commute for space-like intervals (i.e. when 
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). Using the expression 

for the electric field operator we get, 
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To evaluate the above expression we need to evaluate the imaginary part of the following expression, 
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The imaginary part of the above expression is, 
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Finally, the field commutator becomes, 
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The above expression shows that the commutator is non-zero only on the light cone (i.e. when 
'ttcrr 


) and therefore the fields commute for space-like intervals.   


