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Chapter 4: Quantum Mechanics of a 
Simple Harmonic Oscillator 
 
4.1 Quantum Mechanics of a Simple Harmonic Oscillator  
 

 
 
Consider the Hamiltonian of a simple harmonic oscillator (a particle in a quadratic potential well), 
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In terms of these operators, the Hamiltonian Ĥ  becomes, 
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In the Heisenberg picture, the equation for the momentum operators is,  
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We can write these as, 
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The matrix in the above equation has off-diagonal terms. We need to diagonalize it in order to solve it. 
The eigenvalues of the matrix are, 
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and the corresponding eigenvectors are, 
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We define a new operator â  as proportional to the first eigenvector, 
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The Heisenberg equation for â  is, 
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The operator â  is not Hermitian. The corresponding adjoint operator â is, 
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The adjoint operator is proportional to the second eigenvector of the matrix above. It follows that the 

Heisenberg equation for â  is, 
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4.1.1 Canonical Form of the Hamiltonian 
Note that, 
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So the Hamiltonian Ĥ  can be written as, 
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4.1.2 Commutation Relations 

The commutation relation between operators â  and â  can be found from those between x̂  and p̂ , 
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4.1.3 Time Dependence and Heisenberg Equations 
The time evolution equation for the operator â  can be found directly using the Heisenberg equation and 
the commutation relations found in Section 4.1.2. A useful identity to remember is, 
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Using the identity above we get, 

 

     

titi

o

o

o

oo eaetata

tai
dt

tad

ta

tatatatHta
dt

tad
i

































 

ˆ)0(ˆ)(ˆ

)(ˆ
)(ˆ

)(ˆ

2

1ˆˆ),(ˆ)(ˆ),(ˆ
)(ˆ





 

Also, 
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4.1.4 Eigenvectors and Eigenvalues of the Hamiltonian 
We need to find all the eigenvalues of the Hamiltonian, 
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Consider the operator aa ˆˆ  . Let, 
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Let |  be an eigenstate of n̂  with eigenvalue . , 
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The operator aan ˆˆˆ   is semi-positive definite which means it has eigenvalues that are all greater than or 
equal to zero. To see this consider the state, 
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Now consider the state â . The action of the operator n̂  on this state is,  
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Therefore, â is an eigenstate of n̂  with eigenvalue )1(  . Repeating the above procedure yields that 

 aa ˆˆ  is also an eigenstate of n̂  with eiganvalve )2(  .  Therefore, 2â is an eigenvalue of n̂  
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with eigenvalue )2(  .  Similarly, it can be shown that mâ  is an eigenstate of  n̂  with eigenvalue 

)( m .  
 

Now consider that state  |â . We have,  
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Therefore, â  is an eigenstate of n̂  with eigenvalue  1 . Similarly, ma )ˆ(   is also an 

eigenstate of n̂  with eigenvalue )( m .  
 
In summary, starting from an arbitrary eigenstate   of n̂ , with eigenvalue  , we were able to generate 

eigenstates with eiganvalues greater than and less than   by integers. If we keep doing this, then for 
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because the operator aa ˆˆ   is positive semi-definite and must only have non-negative eigenvalues. So if 
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Therefore, all eigenvalues of the operator n̂  are integers. This eigenstate of n̂  with zero eigenvalue is 
denoted by 0 . 

 

It follows from the analysis above that 0ˆa  is an eigenstate of n̂  with eigenvalue 1. And 0)ˆ( na is 

an eigenstate of n̂  with eigenvalue n.  Thus, starting from 0  and applying â operator we can 

generate all the eigenstates of n̂  which will have integral eigenvalues. We label the eigenstate with 
eigenvalue n as n . So, 
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Normalization of the Eigenstates: From previous analysis, 
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So 1ˆ  nna . We require that n  be properly normalized, i.e. mnmn  | . Suppose,  
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then taking the inner product on both sides of the states with themselves we get, 
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The phase of nc  is chosen by convention so that,  
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Again the phase of nb  is chosen by conversion so that, 

 111ˆ  nnna .  

We can write all the eigenstates as follows, 
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Since the Hamiltonian is proportional to n̂ ,  
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the eigenstates of n̂  are also the eigenstates of Ĥ , 
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The lowest energy eigenstate 0  has energy equal to 2o .  
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Completeness Relation for the Eigenstates: 
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Orthogonalily Relation for the Eigenstates: 
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4.1.5 Creation and Destruction Operators 

The operators â and â  are called creation and destruction operators since they increase and decrease the 
energy of an eigenstate by o , respectively. The name “creation” and “destruction” comes from 

quantum electrodynamics where these operators create and destroy photons. The operator aan ˆˆˆ   is 
called the number operator since it gives the number of energy quanta (of magnitude o ) in an energy 

eigenstate above the lowest energy 2o . In quantum electrodynamics, the number operator gives the 
number of photons in a state.  
 
4.1.6 Wavefunctions for the Eigenstates 
The wavefunctions corresponding to the eigenstates can be obtained as follows. Consider the first the 
lowest energy state 0 . The wavefunction is,   00 xx  . We know that, 
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The properly normalized solution to the above differential equation is, 
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The wavefunction for the state n  can be obtained from  x0  as follows, 
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All the wavefunctions  xn  belong to a set of functions called the Hermite Gaussians and can be 
written as, 
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where, nH  are Hermite polynomials. The first four Hermite Gaussians, along with their squared 
magnitudes, are sketched in the Figure below.   

 
 
4.1.7 Two Independent Harmonic Oscillators 
The Hamiltonian of two independent harmonic oscillators is  
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which can also be written as, 
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The eigenstates are of the form, 21 ||  mn , and,  
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Note that a more formal expression would be, 
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