
Quantum Optics for Photonics and Optoelectronics (Farhan Rana, Cornell University) 
 

 1

Chapter 2: Semi-Classical Light-
Matter Interaction 
 
2.1 A Two-level System Interacting with Classical Electromagnetic 
Field in the Absence of Decoherence 
 
2.1.1 Hamiltonian for Interaction between Light and a Two-level System 
Consider a two-level system, say an electron in a potential well or in an atom with two energy levels, 
interacting with electromagnetic radiation of frequency  . The electric field at the location of the two-
level system is, 

      tEntE o cosˆ


 

 
In the absence of the electric field the Hamiltonian of the electron is, 

 212211
ˆ eeeeHo    

The energy difference between the upper and the lower state is 12   . In the presence of the 

electric field, the potential energy of the electron of charge  eq   is, 

      tEnrqtErq o cosˆ.ˆ.ˆ


 
So the Hamiltonian becomes, 

      tEnrqHtH oo cosˆ.ˆˆˆ 
 

Note that the Hamiltonian is time-dependent. In the two dimensional Hilbert space consisting of only 

states 1e  and 2e , and assuming 0ˆˆ
2211  ereere


, the above Hamiltonian can be written as, 

      1221222111 coscosˆ eeteeteeeetH R     

where the frequency R  is related to the “dipole moment” of the states, 

 2112 ˆ.ˆ. enreqEenreqE ooR


   

In the so called rotating wave approximation only the important resonant term in each cosine term is 
retained (we will discuss this in detail later in the course) and one obtains, 
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The Hamiltonian above is used to describe the interaction of a classical electromagnetic field with a two-
level system. Any of the methods used for the time-independent two-level system problem can be used to 
solve the time-dependent problem as well.  
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2.1.2 Solution Using the Schrodinger Picture 
We assume a time-dependent solution of the form, 
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and plug it into the Schrodinger equation, 
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to get the following equations for the coefficients, 
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The detuning   is defined as    12 . The above equations can be solved using appropriate 

boundary conditions. It is convenient to define a frequency   as  22  R . Suppose, 

  10 et  , then the solution is, 
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In the absence of detuning (i.e. 0 ) , the probabilities of finding the electron in the upper and lower 
levels oscillate with a frequency equal to R . These oscillations are called Rabi oscillations, and the 

frequency R  is called the Rabi frequency. The maximum value of the population difference, 

    2
1

2
2 tctc  , is +1. In the presence of detuning, the populations oscillate with a frequency equal to 

  and the maximum value of the population difference,     2
1

2
2 tctc  , is 
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R . There is 

no simple way to incoporate decoherence and/or population decay from the upper level into the lower 
level in the Schrodinger equation. To include these we have to use the density operator formalism.  
 
2.1.3 Solution by Transformation to a Time-Independent Hamiltonian 
Consider the time-dependent Hamiltonian describing the interaction of a two-level system with light, 
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We define a unitary operator  tB̂  as follows, 

    tNitB 1
ˆexpˆ   

To understand the effect of the unitary operator  tB̂  on the state  t  suppose that  t  is written as 

follows, 
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then, 
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The operator  tB̂  “boosts” the energy of the lower level by  .  It is easy to prove the following two 
identities, 

       1expˆ1ˆexpˆ
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where, 
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The Schrodinger equation for the state  t  is, 

 
     ttH
t

t
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 ˆ



  

Suppose we define a new  tR  state as follows, 

      ttBtR  ˆ  

Then differentiating both sides with respect to time, and using the above identities, gives, 
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t

t
i RR

R 
 ˆ



  

The above equation shows that the original problem with a time-dependent Hamiltonian  tĤ  is 

equivalent to a problem with a time-independent Hamiltonian RĤ . One can solve the time-independent 
problem easily using any of the methods of the last Chapter. In particular, some insight is obtained by 

using the eigenstates of the Hamiltonian RĤ . Suppose, for simplicity, that the detuning 

   12  is zero. Then the two eigenstates, and the corresponding eigenenergies, of the 

Hamiltonian RĤ  are, 
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The slitting of the eigenenergies is R . Suppose the initial state is,  
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Finally, the desired quantum state  t  can be obtained as follows, 

       21 2
sin

2
cosˆ 21

etieetettBt R
it

i
R

t
i

R 





 






 




 
   

The above result agrees with the one obtained in 2.1.2 when detuning is zero. The most interesting aspect 
of the above technique is that it shows that the time-dependent problem can be mapped onto a time-
independent problem. We know that in any time-independent problem the eigenstates play a special role. 
Eigenstates are stationary states and whenever any arbitrary state is written as a superposition of 
stationary states, the probability for the state to be found in any one of the stationary states upon 
measurement remains time-independent. Suppose,     100 vtt R   . Then, 
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And therefore, 
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The probabilities of finding the electron in the upper and lower levels remain time-independent when the 

initial state corresponds to an eigenstate of the time-independent Hamiltonian RĤ . This conclusion 
remains valid, of course, even when detuning is non-zero.  
 
 

2.2 Optical Bloch Equations 
 
2.2.1 Solution Using the Density Operator and Optical Bloch Equations 
Here we will use the density operator approach in the Schrodinger picture. Starting from the density 
operator equation,  
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one can derive the differential equations for  t11 ,  t22 ,  t21 , and  t12  by taking matrix 

elements of the density operator equation with respect to the states 1e  and 2e . The result is, 
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The detuning   between the field frequency and the energy level separation is, 
    12  
The solution is most easily obtained, and insightful as well, if one uses a formalism originally developed 
to treat precession of nuclear spins. We define three new real quantities  tVx ,  tVy , and  tVz  as 

follows, 

         itiiti
x etettV   1221  

         itiiti
y etetitV   1221  

       tttVz 1122    

The vector  tV


 is, 

        ztVytVxtVtV zyx ˆˆˆ 


 

Note that the x- and y-components of the vector  tV


 are related to the off-diagonal elements of the 

density operator, and the z-component of the vector  tV


 is related to the occupation probability 
difference between the upper and the lower energy levels (also called the population difference). One can 
now rewrite the equations for the density matrix elements in terms of the quantities  tVx ,  tVy , and 

 tVz ,  
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If one defines a vector frequency 


 as zxR ˆˆ


 
 , then the equations above can be written in 

vector form very compactly as, 

 
   tVX
dt

tVd 


  

Note that all fast time dependencies (on the scale of   or   12   ) present in the equations for the 

density matrix elements are absent in the equation for the vector  tV


 and this is the main advantage of 

working with  tV


. The equation for  tV


 resembles the equation of the magnetic moment  tM


 of a 

classical spin in a constant magnetic field B


, 

 
   tMXB

dt

tMd 


  

where   is the gyromagnetic ratio (ratio between the spin magnetic moment and the spin angular 
momentum). The magnetic moment equation was derived by Felix Bloch in 1946. Therefore, the equation 

for the vector  tV


 is sometimes called the optical Bloch equation.  
 

The following facts are not hard to prove and follow directly from the vector equation for  tV


, 

i) The magnitude of the vector  tV


 does not change with time. 
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ii) The vector  tV


 executes a periodic motion and the angular frequency is equal to the 

magnitude of the vector 


.  

iii) The “plane of rotation” is the plane in which the tip of the vector  tV


 lies during rotation. 

The vector 


 is always normal to the plane of rotation.  
 

 
2.2.1 The Bloch Sphere 

The vector  tV


 completely characterizes the quantum state of an electron interacting with an 
electromagnetic wave.  

 
 
The z-component of the vector equals       tttVz 1122    and gives the population difference 

between the two-levels and can have values between +1 and -1. The other components of the vector  tV


 
capture the coherence in the system and are related to the off-diagonal components of the density 

operator. Since the magnitude of the vector  tV


 does not change with time, and if at time 0t  the 

quantum state of the system is 1e  then     zztVtV z ˆˆ00 


, the magnitude of the vector  tV


 is 
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unity. Therefore,  tV


 rotates with time but its tip always lies on a sphere of radius unity which is called 
the Bloch sphere, as shown in the Figure.   
 
Case of Zero Detuning: If the initial quantum state of the electron is 1e , then 

    zztVtV z ˆˆ00 


, and the vector tip at time 0t  is at the location indicated by the black dot 

on the sphere in the Figure. If electromagnetic field with zero detuning (i.e. )0  is turned on at 0t , 

then since xR ˆ


, the tip of the vector  tV


 rotates in the y-z plane (with x-axis as the axis of 
rotation) as shown in the Figure. The y-z plane is the plane of rotation in this case. The tip of the vector 

 tV


 follows a circle formed where the plane of rotation intersects with the Bloch sphere. This circle is 

called the circle of rotation. At any time, the projection of the vector  tV


 onto the z-axis (i.e. the z-

component) gives the population difference     tt 1122   . The projection onto x-axis and y-axis 
gives the coherences (i.e. the off-diagonal components of the density matrix). At time when 

2 tt R


, the tip reaches the south pole, and the population difference goes to zero but the 

coherence is maximum. At this stage, the electron wavefunction (obtained by direct computation using 
the Schrodinger equation) is, 
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When  tt R


, the tip reaches the positive z-axis, the electron is in the upper level, and the 

population difference is maximum (+1) but the coherence is minimum. The electron wavefunction at this 
stage (obtained by direct computation using the Schrodinger equation) is, 
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When 23 tt R


, the population difference goes to zero again. And when 2 tt R


, the 

population difference is at its minimum value of -1, the electron is in the lower state, and the tip of the 

vector  tV


 is at the starting location shown by the black dot in the Figure. Thus, in one Rabi period 

(given by R  22


) the population difference goes through one complete cycle. This 

phenomenon is called Rabi flopping or Rabi oscillation. 
 
Case of Non-Zero Detuning: Using the Bloch sphere picture, one can visually solve many problems. 

Suppose there is some detuning so that the axis of rotation, given by the direction of zxR ˆˆ


 
 , 

is slightly tilted away from the negative x-axis, as shown below in the Figure. The vector  tV


starts from 
the location of the black dot, but now the plane of rotation is not the y-z plane but a plane that contains 

the black dot (since this is the initial starting point) and is also perpendicular to the direction given by 


. 
The best way to see what this means is to look at the sphere from the top (i.e. from above the North pole) 

as shown in the Figure below.  As the detuning is increased, the plane of rotation of the vector  tV


 tilts. 

The tip of the vector  tV


, of course, always remains on the Bloch sphere and in the plane of rotation. As 

the detuning increases, the frequency of rotation (given by 


) increases and the tip of the vector  tV
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rotates in circles of smaller and smaller radii (the circle of rotation formed by the intersection of the plane 
of rotation and the Bloch sphere). The maximum population difference, given by the z-component of the 

vector  tV


, decreases from +1, and at large detunings it is no longer even positive at any time during the 
dynamics.   

 
 

2.3 A Two-level System Interacting with Classical Electromagnetic 
Field in the Presence of Decoherence and Population Decay 
 
2.3.1 Optical Bloch Equations with Decoherence and Population Decay 
We know that electrons in materials or in atoms in higher lying energy levels usually come down to lower 
energy levels by giving off their energy to phonons or to any other non-radiative channel. In a two-level 
system, one can include relaxation of the population from the upper level to the lower level via such non-
radiative mechanisms. We assume that the population relaxation time is 1T . One can also include the 
effects of decoherence by assuming that the off-diagonal components of the density matrix decay with a 
time constant 2T . In physical systems, the same scattering mechanism is often, but not always, the source 

of both population relaxation (i.e. 1T ) and decoherence (i.e. 2T ). When this is true, 1T  and 2T  are 

related; 12 2TT  . Otherwise, 12 2TT  . In the presence of population relaxation and decoherence, the 
equations for the elements of the density matrix become,  
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The equations for the components,  tVx ,  tVy , and  tVz  are now as follows, 
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One can no longer write the above set of equations in the compact form,  
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Also note that the magnitude of the vector  tV


 is not conserved anymore. The above equations have a 
well defined steady state solution,  
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The above expressions for the steady state show that electromagnetic radiation, no matter how strong, 
cannot create population inversion in steady state (i.e. make the z-component  tVz  positive in steady 
state).  
 
Optical Control by Short Pulses: Short pulses of light can be used to control and/or prepare desired 
quantum states of a two-level system. For example, consider a situation where detuning is zero and 
population relaxation and decoherence times are sufficiently long. Suppose,   10 et  . Radiation 

is switched on at time 0t  and switched off at time given by  tt R


. Such a radiation pulse is 

called a  pulse. At the end of the pulse, the value of   tVz  is approximately +1 and population 

inversion is achieved. The quantum state of the two-level system at the end of the  pulse is, 
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The population will, of course, relax into the lower state after the pulse because of 1T . Similarly, as 

shown earlier, a 2  pulse (i.e. a pulse whose duration in time is R 22 


) can be used to take 

an electron from an initial state 1e  into a linear superposition of 1e  and 2e  given by, 

  

R
t

ititi
eeieet





















2

21

21

2

1






   

 

2.4 Photon Echo Experiments 
 
Photon echo is a useful experimental technique to characterize decoherence times in materials. Consider 
an isolated two-level system (in the absence of any radiation) in which the mean position of the electron 
in both states, 1e  and 2e ,  is zero, and,   

 2112 ereered


  

Now consider the superposition state, 
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The mean position of the electron in such a superposition state is, 

     





 


  tdtrt



 12cos  

The charge density associated with the electron wavefunction oscillates in space with a frequency related 
to the energy level difference. Electron in such a superposition state can therefore radiate electromagnetic 
energy, just like a classical dipole antenna. Radiation from one such electron is too difficult to detect. 
Radiation from many such electrons in a collection of two-level systems would also be difficult to detect 
unless all the electrons were oscillating in-phase. The trick is to get many electrons to oscillate in-phase. 
Electron states in many materials, such as semiconductors, can be modeled as a collection of two-level 
systems.  In most cases, electron energies of the upper and/or levels would have a range of values. In 
other words, the energy difference  , or the detuning   measured with respect to some fixed  , 
would not be the same for all the two-level systems. For some systems,   would be zero, for some   
would be positive, and for some   would be negative. Therefore, charge oscillations in different two-
level systems would not stay in-phase for long. Note that the superposition state, 
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corresponds to a vector  tV


 with the following components, 

       0sincos 





 








 


 tVttVttV zyx 


 

The argument of the cosine and the sine is also the time-dependent phase of the charge oscillation relative 

to t . If for two different two-level systems the vectors  tV


 were to become identical at any point in 
time, then at that moment the electron charge in these two two-level systems will be oscillating in-phase.  
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Photon echo techniques are able to achieve in-phase charge oscillations in a collection of two-level 
systems with even different values of  . Consider such a collection of two-level systems interacting 

with radiation of frequency  . Suppose a short and strong ( R ) electromagnetic 2  pulse is 
used to excite the two-level systems assumed to be all initially in the ground state. The dynamics of each 
two-level system are governed by the equations, 
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Assume that decoherence and population relaxation times are very long. Right after the pulse, the vector 

 tV


 equals ŷ  for all the two-level systems, as shown in Fig.(a) below. The subsequent evolution of 
the two-level systems is according to the equations, 
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The above equations show that the vectors  tV


 of two-level systems with different detunings move apart 

in the x-y plane as shown below in Fig.(b). After some time, say dT , another short and strong (

R ) electromagnetic   pulse is used. The   pulse rotates the vectors  tV


 of all two level 

systems by 180-degrees around the x-axis and the final positions of the vectors  tV


 are as shown in 

Fig.(c) below. Right after the   pulse, the free evolution of the two-level systems is again according to 
the equations, 
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dt

tVd
y

x




   

   tV
dt

tVd
x

y




   

 
0

dt

tVd z  

The   pulse changed the sign of the yV  component of every two-level system, but did not change the 

sign of the xV  component. Consequently, the vectors  tV


 of two-level systems with different detunings, 

which were moving apart in the x-y plane before the   pulse, now start moving closer with time. At time 

equal to exactly dT  after the   pulse, the vectors  tV


 of al two-level systems come together, as shown 
in Fig.(d). At this point in time, electrons in all the two-level systems are oscillating in-phase. 
Consequently, the radiation emitted by them can easily be detected. Because of different detunings, 
charge oscillations in different two-level systems will soon go out of phase with each other. In actual 
experiments, a weak but detectable radiation pulse is detected at the moment when the electrons in all the 
two-level systems are oscillating in-phase. This pulse is called the photon echo pulse.  
 
Now suppose decoherence is present. The coherences will get reduced the longer the time delay dT  is 

compared to the decoherence time 2T  and, therefore, the strength of the photon echo pulse will also get 

reduced as dT  is made longer. Thus, if the strength of the photon echo pulse is measured as a function of 

the time delay dT  then this information can be used to extract the decoherence time 2T  (assuming  

21 TT  ).  
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2.5 Ramsey Fringes and Atomic Clocks 
 
Consider the problem of determining the frequency   of a radiation source with high accuracy (fractional 
accuracy better than one part in 1014). One way to do this would be to make an atom, or a two-level 
system, interact with the radiation from the source. Suppose the energy level separation of the two-level 
system is known to be   with a very high accuracy. The frequency of the source is assumed to be close 
to   but the detuning   is unknown and needs to be determined with high precision. Suppose, one 
considers the following scheme: the two-level system is made to interact with the radiation from the 
source for a duration intT . Immediately afterwards, the upper state occupation (i.e. 22 ) is measured. 

The question is whether this absorption experiment can be used to determine  . We will assume that 

decoherence and population relaxation times are very long. Suppose the duration intT is chosen such that 

the radiation appears to the two-level system as a   pulse (  intT


). But  22 
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  is unkown. To overcome this problem, one can deploy a sufficiently strong pulse such that 

R . After the pulse, the value of 22  is, 

 
 22

2

22





R

R  

If R , the above expression shows that 22  is close to unity irrespective of the value of  . 

Therefore, this simple absorption experiment will not be able to determine   with high precision. 
Atomic coherences can be exploited to obtain much better accuracies, as we will see now.  
 
2.5.1 Ramsey Fringes 
Consider a two level system prepared in the ground state, i.e.   10 et  . At time 0t , a strong 

2  pulse ( R ) of duration intT and detuning   excites the system. The dynamics of the 

two-level system are governed by the equations, 
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Assume that decoherence and population relaxation times are very long. After the pulse, the state vector 

 tV


 equals ŷ  (Fig.(a) below). The subsequent free evolution of the two-level system is according to 
the equations (Fig.(b) below), 
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The vector  tV


 rotates in the x-y plane with a frequency equal to   for a duration T  (Fig.(b) below). 

After this duration T , a second 2  pulse of duration intT  interacts with the two-level system. If the 

time duration T  is such that   mT   , where m  is any positive odd integer, and the state vector 

 tV


 equals ŷ  (Fig,(c) below) , then the second 2  pulse will make the state vector  tV


 equal to 

ẑ  and the two-level system will be in the lower state 1e  after the second pulse. On the other hand, if 

the time duration T  is such that   mT   , where m  is any positive even integer, and the state 

vector  tV


 equals ŷ  (Fig,(d) below), then the second 2  pulse will make the state vector  tV


 equal 

to ẑ  and the two-level system will be in the upper state 2e  after the second pulse. It is not difficult to 

show that under the assumptions R  and very long decoherence and relaxation times, the value 

of zV  at the end of the second pulse is given by 





 
T


cos , and the occupancy of the upper state is given 

by 













  T


cos15.0 . Therefore, if one makes a measurement on the two-level system after the second 

pulse and determines whether the system is in the upper state or the lower state, then, knowing T , the 
detuning   of the radiation from the energy level separation of the two-level system can be determined 
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to a very high accuracy. Note that frequency accuracy in this case is not determined by the time of 
interaction intT  of the two-level system with the radiation but by the duration T  between the two 2  
pulses which can be made very long subject to the constrains imposed by decoherence and relaxation 
times. 

 
           
 
2.5.2 Cesium Atomic Clocks 
The principle discussed above is used in atomic clocks which are very stable and high-precision 
frequency sources. In a Cesium atomic clock, radiation from a tunable RF oscillator is coupled to Cesium 
atoms which have an energy level separation close to ~9.192 GHz. The frequency of the RF oscillator can 
drift over time and needs to be locked to a stable reference with high precision. The principle of operation 
of the clock is as follows. Cesium atoms are prepared in the ground state and made to interact twice with 

2  pulses from the RF source. The duration between these pulses is T . At the end of the second pulse, 
the upper state occupancy of the Cesium atoms is determined. This procedure is repeated many times 
while the frequency of the RF source is varied. A typical plot of the measured upper state occupancy after 
the second pulse vs the detuning of the RF source is shown in the Figure below.  
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The observed oscillations are called Ramsey fringes (after Norman Ramsey). Note that the width of the 
center fringe (in Hz) is T1  (see the inset). A more detailed analysis shows that if one does not make the 

assumption  R  and also does not assume that decoherence and relaxation times are infinitely 
long, then the observed envelope of the oscillations can also be reproduced. Using feedback from these 
measurements, the frequency of the RF oscillator is adjusted and locked to the energy level separation of 
the Cesium atoms. In an actual Cesium fountain clock (see Figure above), Cesium atoms are prepared in 
the ground state and hurled upwards against gravity (like water in a fountain). They pass through a 
microwave a cavity twice; on their way up and then again on their way down. While passing through the 
cavity, the atoms interact with the radiation from the RF source. Finally, the state of the Cesium atoms is 
detected and the cycle is repeated. Recently, ultra-cold atoms with temperatures less than K have been 
used to reduce decoherence and relaxation rates resulting in very stable atomic clocks. The root-mean-
square fractional frequency stability obtained in typical Cesium atomic clocks is given by the expression, 

 
a

c

N

T

T

11
~




 

Here, cT  is the cycle time (time needed to complete one measurement),   is the integration time used in 

estimating the frequency, and aN  is the number of atoms used in one cycle. Typical values of cT  and 

aN  are 1 second and 5106   atoms, respectively. This gives,  

  seconds in is 


 14103
~


 

Very stable RF sources, with fractional stabilities smaller than 10-16, have been realized using these 
principles.  
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