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Chapter 14: Optical Parametric
Oscillators

14.1 Introduction

In this Chapter we will discuss an optical parametric oscillator. A parametric oscillator is almost like a
laser. The difference is that the optical gain inside the cavity comes not from a population inverted

medium but from a nonlinear optical medium which possesses either the second order ( ;(2) or the third

order ( ;(3 ) optical nonlinearity.

Consider an optical cavity that supports two optical modes, mode 1 and mode 2, with frequencies @, and
2w, , respectively, and contains a second order non-linear medium. Mode 1 can experience parametric

gain from mode 2 due to stimulated down conversion, as discussed in Chapter 12. The cavity is pumped
with coherent light at the frequency of mode 2. If the parametric gain for mode 1 becomes equals to the
cavity loss then a large photon number population at the mode 1 frequency can build up inside the cavity
in steady state. This is called parametric oscillation. In this Chapter, we will discuss a degenerate
parametric oscillator.
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14.2 Hamiltonian and Heisenberg Equations
The Hamiltonian, including the second order nonlinearity, is,
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The cavity lifetime for mode 1 photons is 7p¢ and for mode 2 photons it is 7pp. The finite cavity

lifetimes are due to couplings of the cavity modes with the waveguide. The Heisenberg equations for
mode 1 operators, including waveguide coupling, are,
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Here,
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The mode 1 photons coming out of the cavity are described by the equations,
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The equations for mode 2 operators are,
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Since the input radiation at the frequency 2w, is continuous wave coherent state, we have,
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where rj, (units: 1/sec) is the flux of pump photons at frequency 2w, coming into the cavity from the

Here,

waveguide, and 9p is the phase of the pump. Note the following averages,
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14.3 Semi-Classical Solution for Steady State Operation
We first find steady state solutions by replacing the operator equations of the previous Section with their
average values. We assume,
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Taking the average of the operator equations derived in the previous Section we obtain,
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In steady state, we must have,




Quantum Optics for Photonics and Optoelectronics (Farhan Rana, Cornell University)

dpi(t) _ dpalt) _ 0
dt dt
Solution for Mode 1: After setting the right hand side of the second equation above to zero, one can

obtain S5 (t) in terms of f4 (t) , and then one can substitute this value in the first equation to get,
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Now, just as we did in the case of the laser, if we write the complex number f4(t) as x4(t)+ i xo(t) and

then define a vector,
F() = xq(t)% + xp(t)y
=[F(t) [cos(¢)x + r sin(g)y]

then the above equation for S (t) can be written as,
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Since in steady state,
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the steady state value of S4(t) corresponds to that point in the complex X4,X» plane at which the

potential V(F ) has the minimum value. The shape of the potential differs depending on the strength of the
pump rp, . When,
rp < —1
P 2 2
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the potential has a single minimum at 7 = 0. When,
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the potential has two separate minima, both occur at the same non-zero value of |f | but differ in the value

of the angle ¢,
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The pumping rate (1 6151rp2K2) is called the threshold pumping rate rpp,
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When rp, > rpep, and the potential has two minima, the steady state value of P4(t) can correspond to any

one of these two minima. We will assume that in steady state the minimum where ¢ = 6, / 2 is chosen. If

the value of fy is steady state is f1s = | ,B1s| e/?s then we can write,
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The average field strength |,81S| is zero below threshold, but increases with the pumping rate
above threshold.

Solution for Mode 2: In steady state, let,
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Then in steady state the equation,
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which can be written as,
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|ﬂ28| increases with the pumping rate below threshold, but is fixed at a value independent of the

pumping rate above threshold. In steady state,
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14.4 Physical Interpretation of the Steady State Solution

Many features of parametric oscillation are similar to those of a laser. This is best illustrated by looking at

the equation for the average photon number in mode 1 given by | P4 (l‘)2 ,
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We suppose, '
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From the equation,
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We can derive an equation for the photon number in mode 1,
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The first term in the brackets on the right hand side represents cavity loss and the second term describes
the parametric gain due to stimulated down conversion. Note that the gain depends on the number of

pump photons in the cavity. The gain is maximum when ¢2(t ) =2¢ (t) and therefore the phase of the
mode 1 field acquires this optimum value in steady state.

Below threshold, when |ﬂ23| =2,|tpa Iy , the gain is less than the loss, and therefore |ﬂ1s|2 =0. At
threshold, the gain equals the loss,

1
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The above relation can be used to find the threshold pumping rate,
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Above threshold, just like in a laser, the gain cannot exceed the loss. Since the gain is determined by the
value of |ﬂ23| or, equivalently, the number of photons in mode 2, the number of photons in mode 2

remain fixed at their threshold value even when the pumping rate r, is increased above the threshold

pumping rate fpy, . Therefore, above threshold, |ﬂ23| =2,Tp2 Ipth -

14.5 Quantum Fluctuations and Noise
To study the quantum properties of the light coming out of an optical parametric oscillator, we expand the
field operators as follows,
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14.5.1 Operation below Threshold and Squeezing
Field inside the Cavity: We first consider the case below threshold. We have,
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The linearized equation for the operator A51 (t ) becomes,

R 7

dABy(t 1 “ 1 ¢ me'2
(0 _ _ Aby(t)+ K |Bps|Abj (1) + | — Sin() € 2
dt 27 Tp1

p1
Let,
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then,
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The above equations can be solved by direct integration to find the following steady state mean square
quadrature fluctuations,
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Much below threshold (i.e. for rp <<rpp ), the fluctuations in both quadratures equal 1/4 , as expected.

As the pumping rate is increased and the threshold is approached, the fluctuations in one quadrature
increase and the fluctuations in the other quadrature decrease. Since,
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the quantum state of mode 1 inside the cavity is not a squeezed state or a two-photon coherent state.
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Field outside the Cavity: The field outside the cavity is not the same as the field inside the cavity. Recall

that,
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Notice that the field outside the cavity also consists of the reflected vacuum fluctuations (last terms on the

left hand sides in the above equations). The quadratures of the outside propagating field are defined as
follows,
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To find the field outside the cavity, it is best to work in the frequency domain. We the equations for the
field quadratures inside the cavity in the frequency domain and use the relations,
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The quadratures of the field outside the cavity are therefore,
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The spectral densities of the noise in the two quadratures in the field outside the cavity are,
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The following trends should be noted in the above expressions:

1) When rp <<rps, the spectral densities of the noise in the two quadratures in the output are both

constant (as a function of the frequency) and equal to 1/ 4vg .
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large and the low frequency spectral density of the noise in the quadrature AX Op 2+ 7/2 becomes very
(o)

i) As rp = Iptp , the low frequency spectral density of the noise in the quadrature AX becomes very

small (much smaller than 1/ 4vg ). Therefore, low frequency fluctuations in the quadrature AX out

Op 2+ 72
are squeezed at the expense of the low frequency fluctuations in the quadrature A)A(gu;z, which are
()
amplified.
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roughly corresponds roughly to the inverse of the cavity photon lifetime 7. For frequencies larger than

iii) The bandwidth over which the low frequency fluctuations are squeezed in the quadrature AX

the inverse of the cavity photon lifetime 7p, the noise in the output field is essentially due to the

reflected vacuum fluctuations and therefore the spectral density of the noise for both the quadratures
equals 1/4Vg .

14.5.2 Operation above Threshold

Above threshold we have,
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and the parametric gain for mode 1 equals the cavity loss,
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Substituting the above expressions in the equations for the field operators give,
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The quadratures of the cavity fields are defined as,
Aby(t) = AXg, j2(t)+ 1 AX g 2.4 7/2(t)

Aby(t) = AV g, (1) + 1A g, 4 2/2(8).

We get the following equations for the noise quadratures,
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Gin(t)z Fin(t)_ rpe
é,-,, (t), defined as above, is a zero mean noise source with the same correlations and commutation

relations as the noise source éin (t) Note that above threshold, the quadrature fluctuations of the pump (at
frequency 2w, ) and the signal (at frequency @, ) are coupled. We can solve the first two equations in the

frequency domain to get,
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The quadrature of the output field is,
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Similarly the other quadrature of the output ﬁeld can also be found
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The spectral densities of the quadrature noise can be found from the above expressions. Needless to say,
the resulting expressions are complicated. The coupling between the pump (at frequency 2@, ) and the
signal (at frequency @, ) quadratures above threshold, and the resulting second order nature of the

frequency response function, results in resonance in the quadrature noise spectral densities at frequencies
given by,
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2Tp1Tp2
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In the amplified quadrature, the low frequency (~DC) noise, which was much larger than 1/ 4vgy near
threshold, approaches 1/ 4vg in the limit of strong pumping when | P S| — . Similarly in the attenuated
quadrature, the low frequency (~DC) noise, which was much smaller than 1/ 4vg near threshold, also
approaches 1/ 4vg in the limit |ﬂ1s| — ©,
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