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Chapter 14: Optical Parametric 
Oscillators 
 
 

14.1 Introduction 
 
In this Chapter we will discuss an optical parametric oscillator. A parametric oscillator is almost like a 
laser. The difference is that the optical gain inside the cavity comes not from a population inverted 

medium but from a nonlinear optical medium which possesses either the second order ( 2 ) or the third 

order ( 3 ) optical nonlinearity.  
 
Consider an optical cavity that supports two optical modes, mode 1 and mode 2, with frequencies o  and

o2 , respectively, and contains a second order non-linear medium. Mode 1 can experience parametric 
gain from mode 2 due to stimulated down conversion, as discussed in Chapter 12. The cavity is pumped 
with coherent light at the frequency of mode 2. If the parametric gain for mode 1 becomes equals to the 
cavity loss then a large photon number population at the mode 1 frequency can build up inside the cavity 
in steady state. This is called parametric oscillation. In this Chapter, we will discuss a degenerate 
parametric oscillator.  
 

 
14.2 Hamiltonian and Heisenberg Equations 
The Hamiltonian, including the second order nonlinearity, is,  
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The cavity lifetime for mode 1 photons is 1p  and for mode 2 photons it is 2p . The finite cavity 

lifetimes are due to couplings of the cavity modes with the waveguide. The Heisenberg equations for 
mode 1 operators, including waveguide coupling, are, 
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The mode 1 photons coming out of the cavity are described by the equations, 
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The equations for mode 2 operators are, 
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Here, 
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Since the input radiation at the frequency o2  is continuous wave coherent state, we have, 
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where pr  (units: 1/sec) is the flux of pump photons at frequency o2  coming into the cavity from the 

waveguide, and p  is the phase of the pump. Note the following averages, 
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14.3 Semi-Classical Solution for Steady State Operation 
We first find steady state solutions by replacing the operator equations of the previous Section with their 
average values. We assume, 
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Taking the average of the operator equations derived in the previous Section we obtain, 
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In steady state, we must have, 
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Solution for Mode 1: After setting the right hand side of the second equation above to zero, one can 
obtain  t2  in terms of  t1 , and then one can substitute this value in the first equation to get, 

 
  *

121
2

1
2

21
1

1 2
2

1 


 pi
ppp

p
er

dt

td
  

Now, just as we did in the case of the laser, if we write the complex number )(1 t  as )()( 21 txitx   and 
then define a vector, 
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then the above equation for  t1  can be written as, 
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Since in steady state, 
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the steady state value of )(1 t  corresponds to that point in the complex 21,xx  plane at which the 

potential  rV 
 has the minimum value. The shape of the potential differs depending on the strength of the 

pump pr . When, 
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the potential has two separate minima, both occur at the same non-zero value of r


 but differ in the value 

of the angle  ,  
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The pumping rate   12
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 pp  is called the threshold pumping rate pthr , 
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When pthp rr  , and the potential has two minima, the steady state value of )(1 t  can correspond to any 

one of these two minima. We will assume that in steady state the minimum where 2p   is chosen. If 

the value of 1  is steady state is si
ss e 1
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The average field strength s1  is zero below threshold, but increases with the pumping rate 

above threshold.  
 
Solution for Mode 2: In steady state, let, 
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Then in steady state the equation, 
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s2  increases with the pumping rate below threshold, but is fixed at a value independent of the 

pumping rate above threshold. In steady state,     
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14.4 Physical Interpretation of the Steady State Solution 
Many features of parametric oscillation are similar to those of a laser. This is best illustrated by looking at 

the equation for the average photon number in mode 1 given by  21 t , 
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From the equation, 
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We can derive an equation for the photon number in mode 1, 
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The first term in the brackets on the right hand side represents cavity loss and the second term describes 
the parametric gain due to stimulated down conversion. Note that the gain depends on the number of 
pump photons in the cavity. The gain is maximum when    tt 12 2   and therefore the phase of the 
mode 1 field acquires this optimum value in steady state.  
 

Below threshold, when pps r22 2   , the gain is less than the loss, and therefore 0
2

1 s . At 

threshold, the gain equals the loss,  
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The above relation can be used to find the threshold pumping rate, 
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Above threshold, just like in a laser, the gain cannot exceed the loss. Since the gain is determined by the 
value of s2  or, equivalently, the number of photons in mode 2, the number of photons in mode 2 

remain fixed at their threshold value even when the pumping rate pr  is increased above the threshold 

pumping rate pthr . Therefore, above threshold, pthps r22 2   . 

  
 

14.5 Quantum Fluctuations and Noise 
To study the quantum properties of the light coming out of an optical parametric oscillator, we expand the 
field operators as follows, 
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where, 
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14.5.1 Operation below Threshold and Squeezing 
Field inside the Cavity: We first consider the case below threshold. We have, 
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The linearized equation for the operator  tb1̂  becomes, 

 2)(ˆ1
)(ˆ)(ˆ

2

1)(ˆ

1
121

1

1
pi

in
p

s
p

etStbtb
dt

tbd






 


 

Let,  
 )(ˆ)(ˆ)(ˆ 2221 txitxtb

pp    

then, 

 














































































i

etSetS
tx

dt

txd

etSetS
tx

dt

txd

pp

p
p

pp

p
p

i
in

i
in

p
s

p

i
in

i
in

p
s

p

2

)(ˆ)(ˆ1
)(ˆ

2

1)(ˆ

2

)(ˆ)(ˆ1
)(ˆ

2

1)(ˆ

22

22

1
222

1

22

1
22

1

2





















 

The above equations can be solved by direct integration to find the following steady state mean square 
quadrature fluctuations, 

 





































pth

p

pth

p

r

r
tx

r

r
tx

p

p

1

1

4

1
)(ˆ

1

1

4

1
)(ˆ

2
22

2
2





 

Much below threshold (i.e. for pthp rr  ), the fluctuations in both quadratures equal 41 , as expected. 

As the pumping rate is increased and the threshold is approached, the fluctuations in one quadrature 
increase and the fluctuations in the other quadrature decrease. Since, 
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the quantum state of mode 1 inside the cavity is not a squeezed state or a two-photon coherent state.  
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Field outside the Cavity: The field outside the cavity is not the same as the field inside the cavity. Recall 
that, 
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Notice that the field outside the cavity also consists of the reflected vacuum fluctuations (last terms on the 
left hand sides in the above equations). The quadratures of the outside propagating field are defined as 
follows, 
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To find the field outside the cavity, it is best to work in the frequency domain. We the equations for the 
field quadratures inside the cavity in the frequency domain and use the relations, 
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The quadratures of the field outside the cavity are therefore, 
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The spectral densities of the noise in the two quadratures in the field outside the cavity are, 
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The following trends should be noted in the above expressions: 
 
i) When pthp rr  , the spectral densities of the noise in the two quadratures in the output are both 

constant (as a function of the frequency) and equal to gv41 .  
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ii) As pthp rr  , the low frequency spectral density of the noise in the quadrature out
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roughly corresponds roughly to the inverse of the cavity photon lifetime 1p . For frequencies larger than 

the inverse of the cavity photon lifetime 1p , the noise in the output field is essentially due to the 

reflected vacuum fluctuations and therefore the spectral density of the noise for both the quadratures 
equals gv41 .   

 
14.5.2 Operation above Threshold  
Above threshold we have, 
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and the parametric gain for mode 1 equals the cavity loss,  
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Substituting the above expressions in the equations for the field operators give, 
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The quadratures of the cavity fields are defined as, 
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We get the following equations for the noise quadratures, 

 

 

 
 













 






























2

)(ˆ)(ˆ1
)(ˆˆ

2

1ˆ

2

)(ˆ)(ˆ1ˆ
)(ˆ

2
21

2

1
1

2 22

pp

pp
p

pp

p
p

i
in

i
in

p
s

p

i
in

i
in

p
s

etGetG
txty

dt

tyd

etSetS
ty

dt

txd



















 

and 

 

 
 

 













 







































i

etGetG

txty
dt

tyd

i

etSetS

tytx
dt

txd

pp

pp
p

pp

pp
p

i
in

i
in

p

s
p

i
in

i
in

p

s
p

2

)(ˆ)(ˆ1

ˆ)(ˆ
2

1)(ˆ

2

)(ˆ)(ˆ1

)(ˆˆ1ˆ

2

2212
2

2

1

2122
1

22

22





















                                     

                                       

 

where, 

     pi
pinin ertFtG


 ˆˆ  

 tGinˆ , defined as above, is a zero mean noise source with the same correlations and commutation 

relations as the noise source  tSinˆ . Note that above threshold, the quadrature fluctuations of the pump (at 

frequency o2 ) and the signal (at frequency o ) are coupled. We can solve the first two equations in the 
frequency domain to get, 
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The quadrature of the output field is, 
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Similarly the other quadrature of the output field can also be found, 
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The spectral densities of the quadrature noise can be found from the above expressions. Needless to say, 
the resulting expressions are complicated. The coupling between the pump (at frequency o2 ) and the 

signal (at frequency o ) quadratures above threshold, and the resulting second order nature of the 
frequency response function, results in resonance in the quadrature noise spectral densities at frequencies 
given by, 
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In the amplified quadrature, the low frequency (~DC) noise, which was much larger than gv41  near 

threshold, approaches gv41  in the limit of strong pumping when s1 . Similarly in the attenuated 

quadrature, the low frequency (~DC) noise, which was much smaller than gv41  near threshold, also 

approaches gv41  in the limit s1 , 
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