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Chapter 13: Quantum Optics of 
Lasers 
 
 

13.1 Introduction 
Consider a N  two-level system interacting with a single mode of radiation in a cavity, as shown below. 
  

 
In this Chapter, we will discuss the operation of a laser composed of the above two-level systems 
interacting with a single mode of radiation in a cavity. We assume that the two-level systems are 
“pumped” into a population inverted state using a third level, as shown below.  

 
 
All electrons pumped form the lowest level into the third level relax down very quickly into the second 
level. Including the effects of cavity photon loss, population relaxation, decoherence, and pumping one 
can write the following set of equations, 
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Here, the input vacuum fluctuation operators are, 
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The photons coming out of the cavity are described by the equations, 

 

   

       

   

        ti
in

p

ti
Lg

p

ti
Rg

ti
out

ti
in

p

ti
Lg

p

ti
Rg

ti
out

oo

oo

oo

oo

etStaetzbvta

etzbvetS

etStaetzbvta

etzbvetS





























ˆˆ1
,0ˆˆ1

                  

,0ˆˆ

ˆˆ1
,0ˆˆ1

                    

,0ˆˆ

 

As discussed in an earlier Chapter, in the limit of strong decoherence one can integrate out the equations 
for the operators  t̂  and  t̂  and obtain the following operator rate equations, 
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where, 
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Suppose the average populations, photon number, and output photon flux are, 
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The average populations and photon number obey the equations, 
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In (1) and (2), it is convenient to assume that the spontaneous emission term is absorbed in the definition 
of relaxation (i.e. 22 Ngd  is included in the term 12 TN ). Define,      tNtNtNd 12  , and since 
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Subtract (2) from (1), to get, 
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Equations (5) and (6) describe the operation of a laser. 
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In the steady state (5) and (6) give, 
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Of course, one can use a computer to solve (5b) and (6b), which form a system of coupled non-linear 
equations for the population difference and the photon number. To gain insight, we obtain approximate 
solutions in different regimes.  
 
 

13.2 Regimes of Operation for a Laser 
 
13.2.1 No Pumping (1/Tp = 0) 
When the pumping rate is zero (i.e. 1/Tp = 0), one obtains the steady state solution, 
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When the pump is turned off, all electrons are sitting in the lower energy level and there are no photons 
inside the cavity.  
 
13.2.2 Medium Offers Net Optical Loss (0 < 1/Tp < 1/T1 ) 
Suppose pumping rate is increased from zero. dN  will increase from N  but will remain negative if  
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pump rate and the relaxation rate and that is why it is justified to assume 0n  in (5b). Equation (5b) 
gives, 
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Using the above result in (6b) gives, 
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dN  vs pT1  as obtained from Equation (7) is plotted below.  

 
For all values of pumping rate pT1  less than the relxation rate 11 T , dN  is negative. This means that the 

stimulated emission rate  nNgd 22  is less than the stimulated absorption rate  nNgd 12 . The material 
offers net loss to the photons, and photons are lost from the cavity not just by escaping into the waveguide 
but also by stimulated absorption.  
 
13.2.3 Medium is Transparent (1/Tp = 1/T1 ) 
When the pumping rate PT1  equals the relaxation rate 11 T  we have, 
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Transparency is the condition when the stimulated emission rate  nNgd 22  is equal to the stimulated 

absorption rate  nNgd 12 . A transparent medium offers no net optical gain and no net optical loss. 
However, the photons in the cavity will still see a net loss because photons can escape from the cavity. 
But at least in transparency the material is not contributing to the optical loss. The photon number n  is 
still small, and so the approximation 0n  in (7) remains valid.  
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When the pumping rate pT1  exceeds the relaxation rate 11 T , dN  becomes positive (population 

inversion). This means that the stimulated emission rate  nNgd 22  is greater than the stimulated 

absorption rate  nNgd 12 , the material now provides net optical gain. Equation (6) shows that the net 
optical gain experienced by the photons in steady state equals, 
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As long as pdd Ng 12   the photons in the cavity experience net loss since the loss due to photons 

escaping from the cavity exceeds the gain from the population inverted medium. Consequently, the 
average number of photons n  in the cavity is still small and therefore the approximation 0n  in (7) 
remains valid.  
As the pumping rate is increased further, dN  increases (as given by Equation (7)) and at some point dN  
becomes so large that the optical gain from the medium approaches the optical loss due to photons 
escaping from the cavity, i.e., 
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increases dramatically since the denominator approaches zero. In physical terms, the net photon 
generation rate through stimulated processes (given by nNg dd2 ) is becoming equal to the photon loss 

rate due to photons escaping from the cavity (given by pn  ). Photons are multiplying at a rate nearly 

equal to the rate at which they are leaving the cavity. Consequently, a large population of photons builds 
up in the cavity in steady state. The relation, 
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suggests that the photon number will becomes   if dd Ng2  becomes equal to p1 , and even negative 

if  dd Ng2  were to exceed p1 . So it must be that dd Ng2  should never exactly equal p1  and must 

always be less than p1 . How is this guaranteed? We go back to Equation (7), 
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When the photon number in the cavity is large the second approximate equality in the above expression 
no longer remains valid. A large photon number will ensure in steady state the value of dN , for a given 
pumping rate, is much smaller than the value predicted by the approximate relation, 
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The value of the pumping rate for which the above approximate relation (falsely) predicts that the 
material gain dd Ng2  will equal cavity photon loss p1  is called the threshold pumping rate, 

  
 12

1211

1
22

1

1

1












pd

pd

pth

ppth

pth
ddd

Ng

Ng

TT

TT

TT
NgNg





 

The population difference value needed to make the material gain equal to the cavity loss is called the 
threshold population difference, 
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value of population difference dN  from changing much. This pinning of the population difference dN , 

and the material gain nNg dd2 , when the pumping rate pT1  rate is equal to or larger than the threshold 

pumping rate pthT1 , is called gain saturation. The rapid increase in the photon number (when the 

pumping rate pT1  is larger than the threshold pumping rate pthT1 ) is called lasing.  

 
Approximate Model for Lasing: When the pumping rate pT1  exceeds the threshold pumping rate 
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since our assumption of dthd NN   will give an infinite value for n . Instead, we use Equation (5b) to 
determine n  above threshold, 
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When pT1  exceeds the threshold pumping rate pthT1 , n  increases linearly with the pumping rate, and 

the population difference dN  remains fixed at a value close to dthN .  
 
 
13.2.6 Approximate model for 1/Tp < 1/Tpth (laser below threshold) 
Below threshold, the population difference increases with the pumping rate. The photon number also 
increases with the pumping rate but remains relatively small.  
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13.2.7 Approximate model for 1/Tp > 1/Tpth (laser above threshold) 
Above threshold the population difference is pinned at the threshold population difference value. The 
photon number increases linearly with the pumping rate.  
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Since, 
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above threshold the populations in both the upper and the lower level are also constant, 
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13.2.8 Output Photon Flux and Output Power 
Below threshold, the output power is small and is due to amplified spontaneous emission and one can 
approximate the output power as being zero. Above threshold, the flux of photons leaving the cavity is, 
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Therefore, the output power above threshold is. 
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13.2.9 Exact Graphical Solution 
The steady state Equations (5b) and (6b), 
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can be solved graphically to obtain solutions for both below and above threshold operation. The Figure 
below shows the graphical solution of Equations (5b) and (6b). Equation (5b) is plotted (dashed) for 
different values of the pump rate pT1 . Equation (6b) is plotted (solid) as a single line. It can be seen that 

for pumping rates below the threshold pumping rate pthT1 , the population difference dN  increases with 

the pumping rate and the photon number remains very small. When the pumping rate exceeds the 
threshold pumping rate, the population difference dN  remains fixed at values close to dthN  and the 
photon number increases rapidly with the pumping rate.  
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13.2.10 Laser Stability above Threshold and Relaxation Oscillations 
The steady state solution of the laser rate equations above threshold is, 
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The questions is how stable are the above steady state values? In other words, if the populations or the 
photon number are perturbed from their steady state values do they return to their steady state values? To 
study the stability of the laser above threshold expand the population difference and photon number 
around their steady state values,  
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Plug the above expansions in the laser rate equations, 
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Since )(tn  and )(tNd  are small perturbations around the steady state, one can ignore terms that are of 
second order in the perturbations (i.e linearize the equations) to get, 
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Solution: The above coupled differential equations give, 
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42 relaxation oscillation frequency 

The second order differential equations show that the perturbations )(tNd  and/or )(tn  are damped 
and the laser is stable above threshold against small perturbations. The general solution can be 
written as, 
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The constants A,B,C and D are set by the initial conditions. Therefore if the population difference or the 
photon number are disturbed from their steady state values they return to their steady state values 
executing damped oscillations which are called relaxation oscillations. Since, 
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during relaxation oscillations photon number oscillates 90  out of phase with the population difference 
oscillations. The Figure below depicts the relaxation oscillations that occur when the population 
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difference is suddenly increased from its steady state value (by momentarily increasing the pumping rate, 
for example).  

 
 
 

13.3 Field Amplitude Equation for a Laser and Analogy with Second 
Order Phase Transitions 
In this Section, we look at the field amplitude and phase dynamics in a laser. We suppose that, 
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and take the average of the resulting equation to obtain, 
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Assuming      2ˆˆ ttata   , the average population difference satisfies, 
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Suppose we are interested in field dynamics over time scales much longer than the population relaxation 

times. One can then obtain a simple relation between the average population difference  tNd  and  2
t  

by setting    0dttdNd  in the above equation. The result is, 
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The above equation can be used to eliminate  tNd  in the equation for  t  to get, 
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)(t  is a complex field amplitude, with an amplitude and a phase, or equivalently, with real and 

imaginary parts. Let ),()()( 21 txitxt   where )(1 tx  and )(2 tx  are real. We can also define a vector 
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Then the equation for )(t  can be written as,  
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The dynamical equation, )(rVdtrd


 , shows that the vector )(tr


 moves in the direction of the 

steepest descent with respect to the function   rV


 and in steady state )(tr


 will be at the point where the 

function  rV


 has a minimum. Below, we examine the minima of  rV
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 as a function of the pumping rate 

pT1 .  

 
13.3.1 Laser below Threshold (1/Tp < 1/Tpth ) 
Recall that the threshold pumping rate is, 
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For pthp TT 11  , the function  rV
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, plotted below, has only a single minimum at 0r


. Consequently, 

below threshold the steady state solution is, 
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Note that although photons due to amplified spontaneous emission are present in the cavity, the average 
field amplitude is zero since the field has no well-defined phase.  
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13.3.2 Laser above Threshold (1/Tp > 1/Tpth ) 
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The laser equations uniquely determine the average amplitude of the field in steady state but not the 
average phase of the field. In fact, there is no preference for any particular value of the phase )(t . Above 
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threshold, the field acquires an average value of the phase that is quite arbitrary. In other words, there is 
spontaneous breakdown of phase symmetry above threshold. This is quite similar to the breakdown of 
spin up-down symmetry in ferromagnets below the magnetic phase transition temperature. Although the 
spin-spin interactions in a ferromagnet can have complete up-down symmetry, the ferromagnetic state 
below the transition temperature has all spins either pointing in the upward direction or in the downward 
direction and the actual up or down direction selected is quite arbitrary. Thus, the lasing transition has 
many features in common with second order phase transitions.  
 
Since there is no restriction on the average phase  t  of the field above threshold, the smallest possible 
noise or perturbations can send it wandering on the circle shown in the Figure above. But the magnitude 

of  t  is more or less fixed and equals n . We have already seen that any perturbation in the steady 
state value of n  decays after executing relaxation oscillations.  
 
 

13.4 Laser Phase Diffusion and the Schawlow-Townes Expression for 
the Laser Linewidth 
 
13.4.1 Laser below Threshold (1/Tp < 1/Tpth ) 
Consider first a laser operating below threshold. The Heisenberg equation for the field operator is, 
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Here, the Langevin operator )(ˆ tFsp  models the spontaneous emission noise and the Langevin 

operator )(ˆ tSin  models the vacuum fluctuations entering the cavity. If one is interested in phase 
fluctuations over long time scales (long compared to the population relaxation times) then to a 
very good approximation one can replace the operator )(ˆ)(ˆ
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Recall from an earlier Chapter that the spectrum of a quantum state of light is related to the 
Fourier transform of the first order coherence function, 
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The Heisenberg-Langevin equation above can be solved to get,    
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where the FWHM linewidth of the spectrum is, 
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In steady state, the difference between the photon loss rate and the stimulated emission rate is the 
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As the laser approaches threshold, and the gain begins to approach the loss, the linewidth narrows. Right 
before threshold, when, 
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using the definition of the spontaneous emission factor given earlier, 

 
12

2

NN

N
nsp 

  

we can write, 

 
n

n

n

Ng
Ng sp

p

d
dd

p 
 12

2
1 2   

 
13.4.2 Laser above Threshold (1/Tp > 1/Tpth ) 
Below threshold, both the in-phase and the out-of-phase quadratures of the noise operators affect the laser 
linewidth. Above threshold, the amplitude fluctuations are stabilized as a result of gain saturation and the 
amplitude and phase dynamics are decoupled. Consequently, only the out-of-phase quadratures of the 
noise operators affect the linewidth. Out-of-phase noise perturbations cause the laser phase to diffuse in 
time and this phase diffusion determines the laser linewidth.  
 
Consider a laser operating above threshold. Suppose at time t  the field operator has an average value 
given by, 
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where   is the average field amplitude and   is the average phase of the field. We would like to study 

the phase dynamics. The field operators obey the equations, 
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Recall that one can expand the field operator in terms of quadrature operators that are along and 
perpendicular to the direction specified by the average phase value,   
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Also recall that the phase fluctuation operator is, 
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In order to obtain an equation for the phase fluctuation operator we substitute the expansion of the field 
operator in terms of the quadrature fluctuation operators in Equations (9) and (10) and subtract the 
resulting equations. The result is, 
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Above threshold the average value of the population difference is fixed and equal to dthN . Any 
deviations from this average value are quickly restored. Therefore, if one is interested in phase 
fluctuations over long time scales (long compared to the population relaxation times) then to a very good 

approximation one can replace the operator )(ˆ)(ˆ
12 tNtN   by its average value,  

      
pd

dthd g
NtNtNtN

2

1ˆˆ
12   

to get a much simpler equation for the phase fluctuation operator, 
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The above equation shows that the phase is kicked around by noise just like a particle undergoing 
diffusive motion. There is no mechanism that restores the phase to a specific value. The noise driving the 
phase is due to spontaneous emission and also due to vacuum fluctuations entering the cavity from the 
waveguide. The role played by spontaneous emission can be understood in a semi-classical spirit as 
follows. Every spontaneously emitted photon has a random phase. Therefore, after every spontaneous 
emission event the average field phasor gets a random kick whose component tangent to the field phasor 

(t)| = rmin 
1/Tp > 1/Tpth 

x1 

x2 

 
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contributes to the phase noise. Under the action of the noise, the field phasor wanders randomly on the 
circle of radius minr  where, 

 nr  2
min
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The diffusion equation for the phase can be directly integrated to give, 
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Note 

that the laser phase diffusion has almost equal contributions from spontaneous emission and 
vacuum fluctuations. 
 
We are now in a apposition to look at the laser linewidth, 
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For a laser above threshold we have, 
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Therefore, 
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The frequency spectrum of the lasing mode is Lorentzian and the full-width at half-maximum 
(FWHM) laser linewidth  equals, 
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The above expression for the laser linewidth is called the Schawlow-Townes expression (named 
after the inventors of the laser). Note that the laser linewidth, just after threshold is one-half the 
laser linewidth just before threshold. All lasers have linewidths that are equal to or greater than 
the value given by the Schawlow-Townes expression. A large number of average photons in the 
cavity implies a smaller linewidth. When the number of photons in the cavity is large the phase 
kick resulting from the addition of each spontaneously emitted photon is small and, therefore, the 
laser linewidth is narrow. The Schawlow-Townes expression is more often written in terms of 
the output power P  of the laser, 
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The above relation shows that high power lasers with long cavity photons lifetimes have 
narrower linewidths.  
 
 
13.5 Photon Number and Photon Flux Noise of a Laser 
 
13.5.1 Photon Number Noise inside the Laser Cavity  
We use the following three equations to find the photon number and photon flux noise of a laser 
operating above threshold, 
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Recall that one can write, 
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where  tFn̂  is a zero-mean noise source that describes the shot noise associated with the optical 
transitions,  
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The vacuum fluctuations thus describe the shot noise associated with photon loss from the cavity.  
 
Consider a laser operating above threshold. We assume that, 
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We linearize the non-linear equations for the photon number and the population difference operators. The 
linearized equations for the fluctuations become, 
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These equations are best solved in the Frequency domain. Upon Fourier transforming we get, 
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The function )(H  is the modulation response function of the laser. It describes the response of a laser to 

perturbations of different frequency. The shape of the function )(H  is plotted in the Figure below. The 

Figure shows that a laser does not respond to perturbations of frequencies much larger than the laser 
relaxation oscillation frequency r .   
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The photon number noise spectral density can be found using, 
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The mean square photon number fluctuations can be found by integrating the noise spectral density, 
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the normalized variance in the photon number is, 
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 Above threshold, the value of spn  is a constant (does not change with pumping) and its value is fixed by 

the lasing condition, 
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At transparency, spn  is infinite. If the medium is completely inverted then spn  equals unity. In actual 

lasers, the value of spn  is somewhere between infinity and unity. Here, we will assume that 1spn  

above threshold.  
 
Photon Number Noise Much Above Threshold: We now look at the photon number noise much above 
threshold, in the limit of strong pumping when 11,11 TTT pthp  . The steady state photon number is, 
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Since, by assumption, 1spn , we have, 
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This also means that, 
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Thus, in the limit 1spn  and 11,11 TTT pthp  , one can approximate the expression for the 

variance in the photon number as, 
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In the assumed limits, the dominant contributions to the laser noise come from the pumping process and 
from the shot noise associated with photon loss from the cavity. Interestingly, the contribution from the 
shot noise associated with the stimulated emission and absorption processes has disappeared. The reason 
for this is as follows. Suppose that in a certain time interval there are more stimulated emission events 
than given by the average stimulated emission rate. The extra stimulated emission events will end up 
depleting the gain in the two-level system medium. Consequently, the emission events in the successive 
time interval will be reduced in number because of the reduced gain in the medium. The result is that the 
total number of emission events in these two successive time intervals will be more or less close to the 
value dictated by the average stimulated emission rate. This instantaneous negative feedback from the 
gain medium helps reduce the noise from stimulated emission and absorption events. Noise from non-
radiative transitions is negligible much above threshold compared to the noise from the pumping process. 
The above expression shows that much above threshold the variance in the photon number approaches the 
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mean photon number. This, as we know, is a characteristic of a coherent state. However, to infer from this 
result that the quantum state of radiation inside a laser cavity is a coherent state would be a mistake. As 
we have seen in earlier chapters that a statistical mixture of number states with a Poisson probability 
distribution will also exhibit the same photon number characteristics.    
 
13.5.2 Photon Flux Noise outside the Laser Cavity 
The laser photon noise outside the cavity is different from the noise inside the cavity. Consider the noise 
form photon loss events. As seen in the previous Section, these events contribute half of the photon 
number noise inside the cavity much above threshold. The question arises if the photon loss events would 
also contribute noise to the photon flux noise outside the laser cavity. Suppose that in a certain time 
interval there are more photon loss events than dictated by the average photon loss rate from the cavity. 
The extra loss events will end up reducing the number of photons inside the cavity. Consequently, the 
photon loss events in the successive time interval will be reduced in number because of the reduced 
number of photons inside the cavity. The result is that the total number of photon loss events in these two 
successive time intervals will be more or less close to the value dictated by the average photon loss rate. 
This instantaneous negative feedback from the cavity helps reduce the photon flux noise outside the laser 
cavity. We will see how this comes out from the math in the discussion that follows.  
  

 
The field in the waveguide is described by the operators, 
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The average photon flux escaping from the laser cavity is, 
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The flux noise operator is, 
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The last term will never contribute upon averaging so we can neglect it and write, 
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The above equation is best solved in the frequency domain, 

      

 v

p
R F

n
zF ˆˆ

,0ˆ 


  

Inside the cavity we know that, 
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which implies,  
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And therefore, 
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The above expression is very interesting. If we consider the photon flux noise at high frequencies, such 
that r   and   0H , we get, 
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which implies, 
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Thus, at frequencies much higher than the laser relaxation oscillation frequency, the noise in the output 
photon flux (as seen in the flux noise spectral density) is entirely due to the beating between the field 
emerging from the cavity and the reflected portion of the vacuum field incident on the cavity, and the 
resulting noise is exactly at the shot noise level. Next, we look at the photon flux noise spectral density at 
frequencies smaller than the laser relaxation oscillation frequency, when r  and   1H . We 

assume, as before, 1spn  and strong pumping such that, 11,11 TTT pthp  . First note that the 

coefficient of the noise source )(ˆ vF  goes to zero in this limit, 
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This shows that photon loss processes indeed do not contribute to photon flux noise outside the laser 
cavity at low frequencies. The result for the photon flux noise spectral density at low frequencies is,   
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Interestingly, at low frequencies the photon flux noise is again at the shot noise level but the noise at low 
frequencies is entirely due to the pumping process. The noise accompanying pumping is not fundamental. 
In semiconductor lasers, for example, pumping is performed by an electrical current which takes electrons 
from the valence band into the conduction band. Electrical current pumping is essentially noiseless (if one 
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ignores the small amount of current noise from the circuit resistances). Therefore, one would expect that 
the low-frequency photon flux noise of electrically pumped semiconductor lasers to be much smaller than 
the shot noise level. This turns out to be the case. Photon flux noise from semiconductor lasers has been 
demonstrated to have values as much as ~13 dB below the shot noise level. Photon flux noise below the 
shot noise level is a characteristic of amplitude squeezed states. However, to infer from this result that the 
quantum state of radiation emerging from a semiconductor laser cavity is an amplitude squeezed state 
would be a mistake. A statistical mixture of number states with a sub-Poisson probability distribution will 
also exhibit the same photon number characteristics.    
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