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Chapter 12: Linear Optical Amplifiers 
 

 
12.1 Types of Optical Amplifiers 
The phrase “linear optical amplifiers” means optical amplifiers in which the amplitude of the output field 
is linearly related to the input field. For example, parametric amplifiers are linear optical amplifiers even 
though their operation is based on second or higher order optical nonlinearities.  
 
Linear optical amplifiers are of two kinds: 
 
i) Phase Sensitive Amplifiers: These amplify only one quadrature of the input field and attenuate the 
orthogonal quadrature. Example of a phase sensitive amplifier is the degenerate parametric amplifier.  
 
ii) Phase Insensitive Amplifiers: These do not distinguish between quadratures and amplify all 
quadratures in the same way. Examples of phase insensitive amplifiers are ordinary optical amplifiers that 
are based on population inversion in a gain media.  
 
 

12.2 Phase Insensitive Optical Amplifiers 
Consider a system of N  two level systems inside a cavity.  
 

 
 
A strong pump light source is used to create and maintain population inversion such that in steady state, 

     tNtN 12
ˆˆ   

We will look at the amplification of the field corresponding to the cavity radiation mode. We assume that 
the populations in the upper and lower levels are fixed and are not significantly perturbed in the process 
of amplification. This assumption is not entirely accurate since field amplification occurs via stimulated 
emission and the populations must therefore change in the process. This change in population leads to 
nonlinearities in the amplification process. We assume that the stimulated emission rate is not fast enough 
to change the populations significantly in the presence of the strong pump. In steady state, we have,     
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Here,  tnsp  is the population inversion factor. We will assume that both g  and spn  are time-

independent. The Heisenberg equations for the field operators are, 
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The averages and commutation relations of the noise operators are, 
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The above are the simplest equations for linear phase insensitive amplification. We have assumed the 

cavity is lossless. The noise, represented by )(ˆ tFsp , is needed to maintain operator commutation 

relations. To see this, we write the solution of the above equation as,  
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which gives, 
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The above equation shows that field amplification is always accompanied by the addition of 
noise as described by the operator )(ˆ tFsp .  

 
Suppose the average initial photon number in the cavity at time 0t  be  0ˆ tn . 
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The photon number operator at time t is, 
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On taking the average of the above equation we obtain, 
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After time t  the photon number gain is gte2 . Let, 

 gteG 2  
Then, 
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Amplified Spontaneous Emission (ASE): The first term on the right hand side stands for photon number 
amplification via stimulated emission. The second term, which is independent of the initial photon 

number  0ˆ tn , represents photons that were generated via spontaneous emission and then multiplied 

due to stimulated emission. This latter contribution is called amplified spontaneous emission (or ASE) 
and is not desirable. The equation,   
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represents a fundamental relation for linear phase insensitive amplification. If the amplifier has a photon 
number gain of G  then the output must contain  1Gnsp  photons (per mode) due to amplified 

spontaneous emission irrespective of the details of the amplifier.  
 
Photon Number Noise: The mean square photon number after amplification is, 
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The variance in the photon number after amplification is, 
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The above expression for the variance in the final photon number after amplification consists of the 
following terms:  

i)   22 0ˆ Gtn  = Photon number variance in the input that is amplified by the amplifier.  

ii)     111  GnGn spsp = Noise due to the variance in the ASE generated photons.   

iii)    112)0(ˆ  GGntn sp  = Noise due to the beating between the input photons and the ASE 

photons.  
 
Thermal Photon Number Distribution of ASE: Consider the case when the cavity is completely empty 

at time 0t , i.e.   00ˆ tn . The average photon number after time t  is, 
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These photons are generated entirely due to amplified spontaneous emission. The variance in the photon 
number is, 
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The variance in the photon number is related to the mean as in the case of a thermal distribution. In fact, it 
is not difficult to show that the probability distribution of photon numbers for ASE is exactly a thermal 
(or Bose-Einstein) distribution, 
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12.3 Comparison of Optical Amplification with Optical Loss 
For comparison, we consider a field undergoing optical loss inside a cavity and described by the 
equations, 
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The solution is, 
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The above equation shows that loss is also always accompanied by the addition of noise as 
described by the second term on the right hand side. The averages and commutation relations of the 
noise operators are, 
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The photon number operator is, 
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On taking the average of the above equation we obtain, 
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After time t  the photon number loss is te 2 . Let teL 2 . Then, 
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Photon Number Noise: The mean square photon number after loss is, 
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The variance in the photon number after loss is, 
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The above expression for the variance in the final photon number after loss consists of the following 
terms:  

i)   22 0ˆ Ltn  = Photon number variance in the input that is reduced by the loss.   

ii) )1()0(ˆ LLtn  = Noise introduced as a result of the loss.  

 

12.4 Quadrature Amplification and Noise with a Phase Insensitive 
Amplifier 
The quadrature operator  txˆ  is defined as,  
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The equation for  txˆ  in the presence of gain is, 
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The solution is, 
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The above equations are true for all values of  . The variance in the quadrature consists of the following 
terms: 

i)   Gtx 0ˆ2    = Quadrature fluctuations in the input that are amplified. 

ii) 
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 = Quadrature noise that is added by the amplifier. 

 
 

12.5 Coherent State Amplification 
In Chapter 9 we showed that a coherent state remains a coherent state when undergoing loss. Here we 
discuss how coherent states behave under linear phase insensitive amplification. Suppose the photon 
number gain of the amplifier is G , and the initial quantum state of radiation is the coherent state  . It 

follows that, 
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After amplification, 
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Note that,  
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Therefore, the final state has a much larger photon number variance than a coherent state. To see this 
explicitly, consider an ideal amplifier with complete population inversion (i.e. 1spn ). Then, 
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The right hand side can be much larger than unity.  
 
We look at the quadratures next. For the input state we have, 
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After amplification we get, 
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It is obvious that, 
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And therefore the quadrature variance of an amplified coherent state is much greater than 41 .  
 
 

12.6 A Traveling Wave Optical Amplifier 
Consider an optical amplifier of length L , as shown below.  

 
We assume that the amplitude gain per unit length is g  and the photon number gain G  of the amplifier is 

therefore  gLeG 2 . In the presence of gain the equation for the operator  z,tb̂  is, 
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Conservation of the commutation relation, 
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The averages of the noise operators are, 
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Solution of the travelling wave equation in the presence of gain is, 
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The average flux at the output is, 
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The right hand side consists of the following terms: 

i)   GtvzF g 0,ˆ  = Amplified input photon flux. 

ii)  1
2



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 = Photon flux at the amplifier output due to amplified spontaneous emission (ASE).  

 
Note that the ASE flux depends on the optical bandwidth   of interest. This is true as long as the 
bandwidth   is much smaller than the gain bandwidth. Photons are emitted spontaneously in the entire 
gain bandwidth and the rate of emission in a small bandwidth   is proportional to  . Consequently, 
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ASE photon flux coming out of the amplifier in a bandwidth   is proportional to  . Another way to 
arrive at this result is as follows. The number of modes per unit length of the amplifier is  2 . The 

number of ASE photons per mode at the output is  1Gnsp . Therefore, the ASE photon density 

(number of ASE photons per unit length) at the output of the amplifier is, 
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12.7 Phase Sensitive Optical Amplifiers 
Phase sensitive amplifiers, as the name suggests, amplify only one quadrature of the input. Degenerate 
parametric amplification is an example of phase sensitive amplification. One of the simplest interactions 
in nonlinear optics is where a photon of frequency 2  splits into two photons, each of frequency  . This 
process, known as degenerate parametric down conversion, can happen in a medium with a non-zero 

second order nonlinear susceptibility  2 . Degenerate parametric down conversion is called 
“degenerate” because the down converted photons have the same frequencies. One can also have 
parametric down conversions in which a photon of frequency 2  splits into two photons of frequencies 

1  and 2 , where 212   . 

 
 
The cavity is assumed to support only a single field mode, and the Hamiltonian is,  

   aaH o ˆˆˆ    

The cavity contains a medium that has a non-zero second order nonlinear susceptibility  2 . The cavity 

is irradiated with a strong pump field having frequency o2 . The pump is assumed to be a continuous 
wave coherent state. The average amplitude of the pump electric field everywhere inside the cavity is 
assumed to be      22exp itiEtE oo  Re . The pump frequency is not supported by the cavity 
and therefore the pump beam photons pass through the cavity. The down converted photons have 
frequency o , which is the frequency of an eigenmode of the cavity, and therefore the down converted 

photons stay in the cavity. The photons in the pump at frequency o2  split into two photons of frequency 

o  each, and as time goes on, the population of photons of frequency o  will increase in the cavity. 

Degenerate parametric down 
conversion 

Cavity 

 (2)
 

Intense pump beam at 
frequency   
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Parametric down conversion consists of both stimulated as well as spontaneous down conversion 
processes. Here, we are interested in parametric down conversion as an amplification process. We assume 
that the initial state of the cavity field is  0t . As a result of down conversion the number of 

photons in the cavity field will increase with time. The Hamiltonian including the parametric interaction 
is, 

               






   2*2 ˆˆˆˆ

2
ˆˆˆ tatbtbta

i
tataH ppo  

  

Here,  tbpˆ  is the field destruction operator for the pump field and the constant   is proportional to the 

nonlinear susceptibility  2 . It is convenient to replace the operator  tbpˆ  by its average value and 

write, 

     22ˆ iti
p

oegtb    

to get, 

           






   222222 ˆˆ

2
ˆˆˆ taetae

g
itataH itiiti

o
oo    

where g  is assumed to be a positive constant.  
 
In the Schrodinger picture, the Hamiltonian is, 

     






   222222 ˆˆ

2
ˆˆˆ aeae

g
iaaH itiiti

o
oo    

The Heisenberg equations for the cavity field operators are, 

  

       

       taegtai
dt

tad

taegtai
dt

tad

ti
o

ti
o

o

o

ˆˆ
ˆ

ˆˆ
ˆ

2

2

















 

The equations for the two quadrature operators,  txˆ  and  tx 2ˆ   , are, 

  

   
   txg

dt

txd

txg
dt

txd

2
2 ˆ

ˆ

ˆ
ˆ








 


 

Note that one quadrature is amplified and the orthogonal quadrature is attenuated. The quadrature that 
gets amplified is selected by the phase of the pump. Also note that there are no fundamental noise sources 
required for the quantum mechanical consistency of the equations. Phase sensitive quadrature 
amplification can therefore be noiseless. For the quadrature that is amplified we have, 

  
   
       gtgt

gt

eGGtxetxtx

etxtx

20ˆ0ˆˆ

0ˆˆ








    

  
   

    Gtxtx

Gtxtx

0ˆˆ

0ˆˆ

22

22








 

Note that the quadrature noise after amplification is just the amplified input noise. There is no noise added 
by the amplifier. For the quadrature that is attenuated we have, 
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   

       gtgt

gt

eG
G

txetxtx

etxtx

2
22

22

1
0ˆ0ˆˆ

0ˆˆ














 

  
   

   
G

txtx

G
txtx

1
0ˆˆ

1
0ˆˆ

2
2

2
2

2
2

2
2












 

Comparing quadrature amplification by phase sensitive and phase insensitive amplifiers we see that, 

  Phase sensitive amplifier:      Gtxtx 0ˆˆ 22    

  Phase insensitive amplifier:        1
4

12
0ˆˆ 22 


 G

n
Gtxtx

sp
  

Noise-Free Quadrature Amplification of a Coherent State: Suppose the initial state of the cavity field 

is a coherent state  , where  ie . In order to amplify the quadrature  txˆ  we choose the phase 

of the pump beam such that   . Then,  

  

 
   

   
4

0ˆˆ

0ˆˆ

0ˆ

22 G
Gtxtx

GGtxtx

tx

















 

The amplifier seems too good to be true. The catch is that it can only amplify one quadrature and one has 
to know in advance which quadrature one wants to amplify and set the phase of the pump appropriately. 
Although degenerate parametric amplifier is a noise-free quadrature amplifier, it is not a noise free photon 
number amplifier, as shown below.  
Photon Number Amplification via Parametric Down Conversion: We now look at photon number 
amplification using a degenerate parametric amplifier. Since, 

         


iti oetxitxta 
 2ˆˆˆ  

We get, 

  
     

         tii

iti

o

o

egtetagtta

e
G

txiGtxta























sinh0ˆcosh0ˆ

1
0ˆ0ˆˆ

2

2
 

Therefore, 

  
       

  )2sinh()0(ˆ)0(ˆ)0(ˆ)0(ˆ
2

1

)(sinh)(sinh)(cosh)0(ˆˆˆˆ

22

222

gtetataetata

gtgtgttntatatn

ii  






 

If we assume that the initial state is a coherent state   where  ie , then, 

  



  2

1

4

1
)(ˆ

2

G
GGtn   

The right hand side consists of the following terms: 

i) G
2  = Amplified input photon number. 



Quantum Optics for Photonics and Optoelectronics (Farhan Rana, Cornell University) 

11 

ii) 



  2

1

4

1

G
G = Photons due to amplified spontaneous parametric down conversion (ASPD).  

Comparing photon number amplification via phase insensitive and phase insensitive amplifiers, we see 
that for the same photon number gain G , the number of added ASPD photons is smaller than the number 
of ASE photons.  
 
 


