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Chapter 12: Linear Optical Amplifiers

12.1 Types of Optical Amplifiers

The phrase “linear optical amplifiers” means optical amplifiers in which the amplitude of the output field
is linearly related to the input field. For example, parametric amplifiers are linear optical amplifiers even
though their operation is based on second or higher order optical nonlinearities.

Linear optical amplifiers are of two kinds:

i) Phase Sensitive Amplifiers: These amplify only one quadrature of the input field and attenuate the
orthogonal quadrature. Example of a phase sensitive amplifier is the degenerate parametric amplifier.

ii)) Phase Insensitive Amplifiers: These do not distinguish between quadratures and amplify all
quadratures in the same way. Examples of phase insensitive amplifiers are ordinary optical amplifiers that
are based on population inversion in a gain media.

12.2 Phase Insensitive Optical Amplifiers
Consider a system of N two level systems 1nside a cavity.

Cavit

A strong pump light source is used to create and maintain population inversion such that in steady state,
<N2 (t)> > <N1 (t)>

We will look at the amplification of the field corresponding to the cavity radiation mode. We assume that

the populations in the upper and lower levels are fixed and are not significantly perturbed in the process

of amplification. This assumption is not entirely accurate since field amplification occurs via stimulated

emission and the populations must therefore change in the process. This change in population leads to

nonlinearities in the amplification process. We assume that the stimulated emission rate is not fast enough
to change the populations significantly in the presence of the strong pump. In steady state, we have,
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Here, ng, (l‘) is the population inversion factor. We will assume that both g and ng, are time-

g(t)=gq4 <N2 (t)- Nq (f)> Ny (t)= <

independent. The Heisenberg equations for the field operators are,
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The averages and commutation relations of the noise operators are,

(Fop(O)Fsp(t)) =29 ngp (¢~ 1)
<ﬁsp(t)ﬁ :p(t')> = 2g(ngy ~1)5(t - t")

o0 F(0)] =298t
The above are the simplest equations for linear phase insensitive amplification. We have assumed the
cavity is lossless. The noise, represented by Fg, (t), is needed to maintain operator commutation

relations. To see this, we write the solution of the above equation as,
a(t)=a(t = 0)el @09 4 g0t éeg(f ) Fo () dt

which gives,
[a(t t)] =20t jdt' é dt" g9t g9(t=t") [F o (). F, (t")]: 1

The above equation shows that field amplification is always accompanied by the addition of
noise as described by the operator ,Esp (t).

Suppose the average initial photon number in the cavity at time { =0 be <ﬁ(t = 0)>

a(t)=a(t = 0)el 120N 4 ool [o9(t-1) (11
0
The photon number operator at time { is,

At)=a%(t)a(t)
=A(t=0)e?%" +4%(t =0)e9 [fe9"1) F (t")at’
+[3e9 Y E (1)t e9 A(t=0)
+[dty oty e 9 e IR E (1) F o (ty)

On taking the average of the above equation we obtain,
() =7 (¢ = 0)) 029" + 1 dty oty (s (1) Fp(t2)) €910 12)

= (A(t=0))e? +ng, (eth - 1)
After time t the photon number gain is e2dt, Let,
G — eth
Then,
(A(t)) = (A(t = 0))G + ngp (G -1)

Amplified Spontaneous Emission (ASE): The first term on the right hand side stands for photon number
amplification via stimulated emission. The second term, which is independent of the initial photon
number <ﬁ(t = 0)> , represents photons that were generated via spontaneous emission and then multiplied

due to stimulated emission. This latter contribution is called amplified spontaneous emission (or ASE)
and is not desirable. The equation,

(A(t)) = (A(t = 0))G +ngp (G -1)
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represents a fundamental relation for linear phase insensitive amplification. If the amplifier has a photon
number gain of G then the output must contain nsp(G—1) photons (per mode) due to amplified

spontaneous emission irrespective of the details of the amplifier.

Photon Number Noise: The mean square photon number after amplification is,
<ﬁ2(t)> =<ﬁ2 (t = O)>G2 +(ii(t =0))(4ngp 1) G(G 1) + ng, G(G 1)

+ngp (2ng, -1) (G-17
The variance in the photon number after amplification is,
<Aﬁ 2(t)>:<A A2 (t = 0)><32 +{ii(t=0))(2ng, -1)G(G-1)

+ngp (G=1) [ngp (G-1)+1]

The above expression for the variance in the final photon number after amplification consists of the
following terms:

i) <A A2 (t = O)> G? = Photon number variance in the input that is amplified by the amplifier.

ii) Ngp G-1) [n sp (G-1)+1 ] = Noise due to the variance in the ASE generated photons.
iii) <ﬁ(t = 0)>(2nsp -1 )G (G - 1) = Noise due to the beating between the input photons and the ASE

photons.

Thermal Photon Number Distribution of ASE: Consider the case when the cavity is completely empty
attime t =0, i.e. <ﬁ(t = 0)> = 0. The average photon number after time f is,

(At)) = ngp (G-1)

These photons are generated entirely due to amplified spontaneous emission. The variance in the photon
number is,

<Aﬁ 2(t)>=nsp (G-1) [nsp (G-1)+1 ]:<ﬁ(t)> [<,:,(t)> 1]

The variance in the photon number is related to the mean as in the case of a thermal distribution. In fact, it
is not difficult to show that the probability distribution of photon numbers for ASE is exactly a thermal
(or Bose-Einstein) distribution,

1 () Y
P(m.t)= 1+<ﬁ(t)>(1+<ﬁ(t)>}

12.3 Comparison of Optical Amplification with Optical Loss
For comparison, we consider a field undergoing optical loss inside a cavity and described by the
equations,

B (e ~7)a0)+27 Sinlele™
B (i, )" (027 Stk

The solution is,
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. . t N
a(t)=a(t = 0)e @0t 1 [2, g=I@ot ! e 7S, (t)dt’

The above equation shows that loss is also always accompanied by the addition of noise as
described by the second term on the right hand side. The averages and commutation relations of the
noise operators are,

(8 (08in(th) =0
(Sin®S (1) = ottt

[$(t0.85 0] =t -1)
The photon number operator is,
A(t)=a"(t)a(t)
—A(t=0)e " + &% (t=0)e " 2y [Le 7§, (t")at'
+y2y e 7S (1) dt'. e " a(t =0)
+2y [paty fydtye 7 e TR G (1) 8y 1)
On taking the average of the above equation we obtain,
(i(t)) =(A(t =0))e~2"

After time t the photon number loss is e Let L=e"2". Then,

(A(t)) = (A(t =0))L

Photon Number Noise: The mean square photon number after loss is,
<ﬁ2(t)> =<ﬁ2 (t= 0)>L2 +{fi(t = 0))L(1-L)

The variance in the photon number after loss is,
<Aﬁ 2(t)>:<Aﬁ2 (t= 0)>/_2 + (At =0)L(1-L)

The above expression for the variance in the final photon number after loss consists of the following
terms:

i) <A A2 (t= 0)> [2= Photon number variance in the input that is reduced by the loss.

ii) <ﬁ(t = 0)> L (1-L)= Noise introduced as a result of the loss.

12.4 Quadrature Amplification and Noise with a Phase Insensitive
Amplifier

The quadrature operator Xg (t) is defined as,
)?0(1‘): é(t)e—ié’ eia)ol‘ ;_é(t)eié’ e—iwot

The equation for Xg (t) in the presence of gain is,

%t(tLgf(e(t)JfﬁH(t)

where,
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. F
Folt)=
The solution is,

t — !
)?9(1')2 )?0 (t = O)egt + ng (tr)eg(t—t ) dt’
0

= (%(t))=(%p(t =0))e9" =(%(t = 0)) VG

<f<5(t)>=<>“<5(t = 0)>ezgt + (b dtq (4 ity <ﬁ9(t1)/39(t2 )> od(t-t1) galt-t2)

(%30)=(%5(t = o)>e+(2”%‘1)(e ~1)
- <A>‘<§(t)>:<m‘<§( - 0)>G+(2n%_1)(6 1)
The above equations are true for all values of . The variance in the quadrature consists of the following
terms:
1) <A)A( g (t = O)> G = Quadrature fluctuations in the input that are amplified.
(2nsp _1)(

i) 4 G- 1) = Quadrature noise that is added by the amplifier.

12.5 Coherent State Amplification

In Chapter 9 we showed that a coherent state remains a coherent state when undergoing loss. Here we
discuss how coherent states behave under linear phase insensitive amplification. Suppose the photon

number gain of the amplifier is G, and the initial quantum state of radiation is the coherent state |a> Lt

follows that,
|w(t=0))=|a)
(it = 0)) = o
<Aﬁ2(t _ 0)> = {ii(t = 0)) = |o|®

After amplification,

(A(t)) = (A(t = 0))G + ngy (G -1)
— |G +ng(G-1)
<Aﬁ2(t)> _ <Aﬁ2 (t = 0)>(32 +ii(t =0))(2ng —1)G (G ~1)+ngp (G -1) [ (6 -1)+1]

Jof2 62 +1af (ongp ~1)6 (G 1)+ np (6 ~1) [nsp (G- 1)+1]

Note that,

<Aﬁ2(t)> >> ((t)
Therefore, the final state has a much larger photon number variance than a coherent state. To see this
explicitly, consider an ideal amplifier with complete population inversion (i.e. ngp =1). Then,
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(a72t) |af*6? +(|a|2 +1je(E-1)

() la[?G+G -1
If |05|2 >> 1, then,
<Af72(t)>
RIS, Te
(A)

The right hand side can be much larger than unity.

We look at the quadratures next. For the input state we have,
—i6 * [0
~ ~ ae +a €
Xg(t =0)) =(a|xgla) =
(%ot =0)) = (af%o|a) >
<A)A(g(t = 0)> = <a‘A)?g‘a > = %
After amplification we get,

—i@ * |6
<>‘<9(t)>=<)?9(t=0)>G={ae ra e JG

(2ng, 1) 61

<Af<§(t)> - <A>%9(t - 0)>G +M(G —1)=%+ ;

4
It is obvious that,

<A)“<5(t)> >> %

And therefore the quadrature variance of an amplified coherent state is much greater than 1/4 .

12.6 A Traveling Wave Optical Amplifier

Consider an optical amplifier of length L, as shown below.

bzt) Amplifier

A

I | 7
z=0 z=L
We assume that the amplitude gain per unit length is g and the photon number gain G of the amplifier is

therefore G = €29 . In the presence of gain the equation for the operator 5(Z,t) is,

0 1 0 |z L =
54—6 EJb(Z,t)—gb(Z,t)"‘Fsp (Z’t)

Conservation of the commutation relation,
_B(z,t),6+(z’,t)] =8(z-2)

requires,

Fsp(zit)’ﬁs;(zl,t')] = —5—55(2—2') s(t-t')
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The averages of the noise operators are,

(P 20Fsp (20)) = 2 gy 51z - 25 - 1)
g

<ﬁsp(z,t)F“s;(z',t')> _ 5—g(nsp _N)6(z—2')S(t -t
g

Solution of the travelling wave equation in the presence of gain is,

~ Vgt t o vyg(t-t) a N
b(z,t)=b(z-v4t0)e 99 +Vg (j)dt NCEL )Fsp(z—vg(t—t),t)
The solution for z> L and f such that z — vgt <0, is,

. R L N _ 7

b(z,t) = b(z - vgt,O)egL +[dz' 92 )Fsp[z',t _(z=2 )J

0 Vg
The average flux at the output is,

(Flet) = vo (B (08z00)

= <If(z - vgt,0)>e29L

+?dz' ?dz"eg(L‘Z') e9(L=2")
0 0

<,ss; [Z',t - (zv_gz )Jﬁsp[zﬁ,t - (Z‘:gZ )J>

= <If(z— vgt,0)>G +Vg Ngp (G-1)5(z - 2)

Recall that,
Sz-2)= |- B eith-po)z-2)
AB 2
A

And for z=2',

AB_ 1A Aw 1
e v e
g

Therefore we have,
- - Aw
<F (z,t)>:< F(z— vgt,0)>G+Znsp(G -1) {forz >L,z-vgt<0
The right hand side consists of the following terms:

) </3 (z—vgt,O)>G = Amplified input photon flux.
i) 2_0),7 sp (G —1) = Photon flux at the amplifier output due to amplified spontaneous emission (ASE).
T
Note that the ASE flux depends on the optical bandwidth Aw of interest. This is true as long as the

bandwidth Aw is much smaller than the gain bandwidth. Photons are emitted spontaneously in the entire
gain bandwidth and the rate of emission in a small bandwidth A is proportional to Aw . Consequently,
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ASE photon flux coming out of the amplifier in a bandwidth Aw is proportional to A@ . Another way to
arrive at this result is as follows. The number of modes per unit length of the amplifier is AB/27x . The

number of ASE photons per mode at the output is ngp (G—1). Therefore, the ASE photon density
(number of ASE photons per unit length) at the output of the amplifier is,

A
fxnsp(e—ﬂ

The flux due to ASE photons is therefore,

A A
ASE photon flux = v x%x Nsp G-1)= 2_7az)n8p (G —1)

12.7 Phase Sensitive Optical Amplifiers

Phase sensitive ampliﬁers, as the name suggests, amplify only one quadrature of the input. -Degenerate
parametric amplification is an example of phase sensitive amplification. One of the simplest interactions
in nonlinear optics is where a photon of frequency 2 splits into two photons, each of frequency . This
process, known as degenerate parametric down conversion, can happen in a medium with a non-zero

second order nonlinear susceptibility ;((2) Degenerate parametric down conversion is called
“degenerate” because the down converted photons have the same frequencies. One can also have
parametric down conversions in which a photon of frequency 2w splits into two photons of frequencies
@1 and @y, where 20 = w4 + wy .

Degenerate parametric down

Cavity .
conversion

" .-~" Intense pump beam at
.7 frequency 2w,

The cavity is assumed to support only a single field mode, and the Hamiltonian is,
H=he, a"a
The cavity contains a medium that has a non-zero second order nonlinear susceptibility )((2) . The cavity

is irradiated with a strong pump field having frequency 2@, . The pump is assumed to be a continuous

wave coherent state. The average amplitude of the pump electric field everywhere inside the cavity is
assumed to be E(t) = Re{ E, eXp(— 2oyt + i2¢) } The pump frequency is not supported by the cavity

and therefore the pump beam photons pass through the cavity. The down converted photons have
frequency @, , which is the frequency of an eigenmode of the cavity, and therefore the down converted

photons stay in the cavity. The photons in the pump at frequency 2@, split into two photons of frequency
®, each, and as time goes on, the population of photons of frequency @, will increase in the cavity.
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Parametric down conversion consists of both stimulated as well as spontaneous down conversion
processes. Here, we are interested in parametric down conversion as an amplification process. We assume

that the initial state of the cavity field is |l//(l‘ = 0)> As a result of down conversion the number of

photons in the cavity field will increase with time. The Hamiltonian including the parametric interaction

18,
A=ty & 04(0)+ | AEOF 550 - 58,00 "0F |
Here, b P (t) is the field destruction operator for the pump field and the constant x is proportional to the

nonlinear susceptibility ;((2). It is convenient to replace the operator 5p (t) by its average value and

write,
ﬁ<5p (t)> - g e—i2w0t+i2¢
to get,

A =ty é+(t)é(t)_ih%{ei2a)ot—i2¢ GO - e 200t +i20 [é +(t)]2}

where g is assumed to be a positive constant.

In the Schrodinger picture, the Hamiltonian is,
H =ha, é+é—ih%{ei2wot_i2¢ [é]Z _ e—i2a)ot+i2¢ [é +]2}

The Heisenberg equations for the cavity field operators are,

_dz(:) ——iwya(t)+g o i2(@ot=9) 5+ (t)
At .
B inga )+ g0 29 a1
The equations for the two quadrature operators, X P (t) and X p+7/2 (t), are,
d %4(t)
¢ .
ng X4 (t)
d gy n/2(t) .
—aj;;[/z == 9Xp17/2 (t)

Note that one quadrature is amplified and the orthogonal quadrature is attenuated. The quadrature that
gets amplified is selected by the phase of the pump. Also note that there are no fundamental noise sources
required for the quantum mechanical consistency of the equations. Phase sensitive quadrature
amplification can therefore be noiseless. For the quadrature that is amplified we have,

%4 (t)=%, (t = 0)e
= (%) =(%(t=0))e% =(x,(=0)VG G —et]
= (20)=((=0)c
= (8x3(0)=(axd (=0)c

Note that the quadrature noise after amplification is just the amplified input noise. There is no noise added
by the amplifier. For the quadrature that is attenuated we have,
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)?¢+7r/2 (t):)?¢+7r/2 (t = O)e_gt

= (Rpea2 ) =(Rgiz2(t=0))e™9 =(%,(t =0))
= <)“(¢25+”/2(t)>=<>?¢25+”/2(t=0)>é

= (ax2,0)=(s%2,, (t:0)>é

Comparing quadrature amplification by phase sensitive and phase insensitive amplifiers we see that,
Phase sensitive amplifier: < AX ¢25 (l‘ )> =<A)? 5 (t = 0)> G

{G =e29f}

&1~

Phase insensitive amplifier: <A)? 5 (t)> = <A)? g (t= 0)> G +(2n%r1) (G-1)
Noise-Free Quadrature Amplification of a Coherent State: Suppose the initial state of the cavity field
is a coherent state |a> , where o :| a |ei9 . In order to amplify the quadrature X (l‘) we choose the phase
of the pump beam such that ¢ = &. Then,
(Rolt=0) =l
= (%p(t))=(Xg(t = 0)>\/G_ =|a| V&

=(a%5(0))=(a%5 (¢ = 0)) 6=
The amplifier seems too good to be true. The catch is that it can only amplify one quadrature and one has
to know in advance which quadrature one wants to amplify and set the phase of the pump appropriately.
Although degenerate parametric amplifier is a noise-free quadrature amplifier, it is not a noise free photon
number amplifier, as shown below.
Photon Number Amplification via Parametric Down Conversion: We now look at photon number
amplification using a degenerate parametric amplifier. Since,

8(t)= {0+ %y na(t) fo70'
We get,

alt)= {’9 (t=ONG+i %y r/2(t = 0)% } g0l +i¢

= {5(t =0)cosh(gt)+a*(t = 0)e 2% sinh(gt) }e—i%t
Therefore,

Alt)= a* (t)alt)= At = 0) [coshz(gt)+smh2 gt)J+S|nh2(gt)
1{a (t=0)a*(t = 0)e?? +4(t = 0)a (t=0)e—2"¢}sinh(2gt)

If we assume that the initial state is a coherent state |a> where o =| a |e"’j , then,

(At)=le|*G +%[G+é—2}

The right hand side consists of the following terms:

1) |0{|2 G = Amplified input photon number.

10



Quantum Optics for Photonics and Optoelectronics (Farhan Rana, Cornell University)

o1 1 . . .
i) Z[G + I 2} = Photons due to amplified spontaneous parametric down conversion (ASPD).

Comparing photon number amplification via phase insensitive and phase insensitive amplifiers, we see
that for the same photon number gain G, the number of added ASPD photons is smaller than the number
of ASE photons.

11



