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Chapter 11: Matter-Photon
Interactions and Cavity Quantum
Electrodynamics

11.1 A Semi-Classical Approach to Particle-Field Interactions

In this Chapter, we will present a quantum theory for the interactions between charged particles and
electromagnetic fieldd. Proper handling of the gauge invariance in electromagnetism will be necessary to
develop a sensible theory. You have seen in Chapter 5 that the easiest way to quantize radiation is to first
choose a gauge and then postulate appropriate commutation relations. But once the field has been
quantized, and its Hilbert space constructed, changing the gauge is not easy and something that we will
avoid. Therefore, in the discussion that follows the particle interacting with the field will be treated
quantum mechanically but the field will be treated classically. This is the so called semi-classical
approach. Once we have obtained a suitable Hamiltonian describing the interaction between the particle
and the field, we will then chose a gauge and quantize the field in Section 11.2.

In quantum mechanics, in the absence of an electromagnetic field, the kinetic momentum operator m\7(t)
of a particle satisfies the following equal-time commutation relations with the particle position operator

r(t).
Fthm v ()] = insy
As a result of the above commutation relations, and following the arguments presented in Chapter 1, the

momentum of a particle is represented by the gradient operator in the position representation (in the
Schrodinger picture),

2 h
my &= -V
i

In the presence of an electromagnetic field, the canonical momentum operator f)(t) of a particle is
defined as,

B(t) = mi(t)+ GAlF(t)t)
It is the canonical momentum ﬁ(t) , and not the kinetic momentum m\7(t), which obeys the equal-time
commutation relations,

Q) pj t) = ihSgj
The above commutation relations give the correct Heisenberg equations for the rate of change of the

particle kinetic momentum operator m\7(t) in accordance with the Lorentz force law. The canonical

momentum thus plays an important role in describing particle-field interactions in quantum mechanics. In
the next Section, we discuss the canonical momentum in more detail.

11.1.1 Canonical and Kinetic Momentum of a Charged Particle
To motivate the ideas behind the canonical momentum, we start from the classical expression for the
momentum of the electromagnetic field,

P(t) = eo10 | d°F E(F,t)x H(F,t)
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The electric field can be decomposed into a divergence-free transverse component and a longitudinal
component,

E(F,t)= EL(F,t)+ E(F,t)
where,
V-eo EL(F,t) = p(F 1) VxE (F,t)=0
V-e, Er(F,t)=0
In Fourier-space,
E(k,t)= E; (k,t)+ E7(k,t)
The terms “transverse” and “longitudinal” are used because the corresponding fields are orthogonal to and
parallel to the direction of the wavevector in Fourier-space,

E, (k.t) = Kk E(k )]
Er(k,t)= [1 —k® /%] E(k,t) = E(k,t) - R[/%E(E,t)]

It follows that,
K-E (kty=—i28D B (k= ik ptkt)
&o k &
k-Er(k,t)=0

We also have,

uoH(r,t) =V x A(r,t)

= poH(k,t) = ik x A(k,t)
The vector potential can also be divided into transverse and longitudinal parts,

A(F,t) = AL(F,t) + Ar (7 ,1)
With the above definitions, one can write the expression for the field momentum as follows,

P(t) = sopto| d3F EL(Ft)xHIF,t)  + eouold’F Er(F,t)x HIF,t)
The second term on the right hand side in the above Equation was identified with the momentum of the
photons in Chapter 5. Here, we explore the first term, which would be zero if there were no charges and,
consequently, if E | (r,t) were zero. The first term can be written as,

Eotio| d3F EL (F,t)x H(F t)

3r 3¢
= go,uojd—k3 EL(— R,t)x H(E,t)z gofﬁ EL(— E,t)x [IE X /Z\(E,t)]
/4

(27)

3r
(Z;rl); p(g: 0 oo fik < Al t)] = -2 o
d>k
(27)°
= [d3F p(F,t)x Ar (F,t)
For a single particle of charge g and position 7 (t ), the charge density is,

p(F.t) = qo(F -7 (t))
Therefore,

sotto] d°F EL(F,t)x H(F.t) = gAr (F(t)t)

34

~ & p(—k.ty [1- & x k] Alk.t)

-]

p(=k,t) Ar (E,t)
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Note that in the expression above the transverse component of the vector potential is evaluated at the
location of the particle position. The momentum of the electromagnetic field is then,

P(t)= qAr (F(t)ht) + eouo]d’F Ex(F.t)xH(F t)
The total momentum of the particle and the field is,

Ptotal(t)= m‘7(t) + qAT(F(t)’t) + 5oﬂojd3f ET(F’t)XH(F1t)
Interestingly, the first two terms on the right hand side are associated with the particle position and
velocity.

11.1.2 Quantum Mechanics of a Charged Particle in the Coulomb Gauge
So far we have not made any choice for the gauge. We now chose a gauge in which the longitudinal
component of the vector potential is zero,

A (r,t)=0
The expression for the total momentum Is’total (t) tells us that if one defines a canonical momentum ,E)(t)
associated with the particle as,

BO)-mi(t)+ aAr (FO)) == milt)= plt)- oAy (F(E))
then the total momentum of the particle and the field can be written in a particularly simple form as the
sum of the particle canonical momentum ﬁ(t) and the momentum of the transverse field,

'Dtotal(t) = :B(t) + 5oﬂojd3F Er (F1t)>< H(F’t)
Recall that in Chapter 5, in the Coulomb gauge, the momentum of the transverse field was identified with
the momentum of the photons. Keeping this in mind, in the Coulomb gauge the canonical momentum
ﬁ(t) of a charged particle is seen to consist of two parts:
1) The kinetic momentum of the charged particle
ii) The momentum of the longitudinal field associated with the charged particle, the source of which is the
charged particle itself

A
vit)
v

Quantization of the Particle Dynamics in the Coulomb Gauge: Taking the charged particle and the
longitudinal field “attached” to it as one composite object with a momentum equal to ﬁ(t), one postulates
the following equal-time commutation relations,

[ 6);2)] =insig
These commutation relations imply that the canonical momentum of the particle (and not the kinetic
momentum) is represented by the gradient operator in the position representation (in the Schrodinger
picture),

poe= Iy
I
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Particle Hamiltonian in the Coulomb Gauge: Assuming a classical electromagnetic field, the
Schrodinger equation for the particle is,

n eyt

Where the Hamiltonian (in the Schrodinger picture) can be written as,

Fl(t)=%m\§.\?+q¢(f,t) :MEquf/f(f,t)

2m
In the position representation, the Hamiltonian is,

2
. p-aAri0f - ﬁv ) qAT(F’t)}
At w(t) = (7| LUl 4 g, ) w(t)) = +q 47 .1) (F.t)

2m 2m

The above expression is valid in the Coulomb gauge. The question now arises what if one makes a
different choice for the gauge. This we consider next.

11.1.3 Quantum Mechanics of a Charged Particle in an Arbitrary Gauge

Consider the following gauge transformation,
Anew(F,t) = AP )+ VF(F,t) = Anew(k,t) = Alk,t)+ ik.F(k,t)

tew(F.1) = ¢(F,t)—§F(F,t)

Here, F(F ,t) is an arbitrary single-valued scalar function. The gauge transformation leaves the electric

and magnetic fields unchanged. Note also that the gauge transformation affects only the longitudinal
component of the vector potential and leaves the transverse component unchanged.

We assume that under the above gauge transformation the quantum state of the particle transforms as,
|‘//new (t)> = T| V/(t)>

where T isa unitary operator. A unitary operator is needed in order to conserve probabilities since we do
not expect that a gauge transformation to affect the physical results in any way.

To find the properties of the operator T we proceed as follows. Consider the average position of the
particle,

(wlt)F|wit))

If we make a gauge transformation, we do not expect the average position value to change. Therefore,
<‘//(t)|F| ‘//(t» = <‘/’new(t)|F Ynew (t» = <‘//(t)|T+ r T| ‘//(t»

This implies,

~ ~

Fif-f = 7] -0
Since the operator T commutes with the position operator, and 7T =1 , one may write T as,

n La(r: ,t)

T=eh
It follows that in the position representation the effect of the unitary operator T is just a local change of
phase of the particle wavefunction,
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i

LN L calft)
‘//new(r’t):<r|‘//new(t)>:<rT‘/’(t»:eh ‘//(r’t)
In order to see how the Hamiltonian transforms under the gauge transformation, we start from the
Schrodinger equation,

in < (6) = e )

N ih%f‘*ﬂ w(t) = AT Ty (t)

a; Tly(t)) +inT ™ %ﬂ w(t)) = AT Tlw (b))

= ih

A+£A B
= nT atT|1//(t)>_

-+
= i< Tl le) =| TAEF -in? 2o Fue)

= Ih%ﬂ I,V(t» = [’:’new (t)]ﬂl//(t»

., 0 -
= Ih ot | ¥V new (t)> = Hpew (tl ¥V new (t)>
Note that the Schrodinger equation maintains its form under the unitary gauge transformation. Here,

r+
Finew () = THOT* —inT <L

We still need to find a(ri: N ) To find a(r: ,t), we start from the Coulomb gauge in which,
A (F.t)=0
= A(F,t)= Ar(F,t)

and,

) ; 1) = insy

~

p <= E_V
i

and we make a gauge transformation,
Anew(F,t) = Ar(F,t) + VF(F,t)

tnew (1) = 47 1) —%F(F,t)

The unitary operator transforming the state is,
i (2
n —alr,t

T=eh ( )
Note that since,

[ (©) P 1) = ihSy
we have,

ThT+ =p-vali t
The transformed Hamiltonian becomes,
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o)~ [5 - qu\r(f:,zt;— Va(f,t)]Z +q(r.t) - aaaf,t

We require that the correct value of a(r,l‘) should result in the transformed Hamiltonian having the same

form as the original Hamiltonian. If,

alf,t)= aFlF )

then the transformed Hamiltonian will have the same form as the original Hamiltonian,

Finew t)- [”“’A;;;V‘“”F + @ dhou(F.)

In the position representation the transformed Hamiltonian is,

2
{7V—qﬁﬂﬂﬂ—qVFGJﬂ oF (7 )
5 +q¢(r,t)—q :
m ot

<F |Hnew(t) ‘//new(t» = ‘//new(F’t)

5 - 2
[. V- qAnew(r, t)}
_|L! om +q¢new(7,f) ‘//neW(F’t)

Since the first term in the transformed Hamiltonian above represents the kinetic energy of the particle, we
must have,

mV(t) = 5(t) — QAnew (F(t)’t)
This suggests that in the new gauge the kinetic momentum of the particle must be related to the canonical
momentum by the above equation. In addition, the form of the Hamiltonian in the position representation

suggests that the canonical momentum [3(t) is still represented by the gradient operator in the
transformed Hamiltonian. Therefore, in the Schrodinger picture,

h
p <= -V
/
and, therefore, p satisfies the familiar commutation relation with the particle position operator,
. B;] =insy

The above arguments show that in any arbitrary gauge the Hamiltonian for a charged particle in a
classical electromagnetic field can be written as,

Hit) - J%ﬁff”ﬁ +aglFN

where the kinetic and canonical momenta are related by,
m(t)= p(t) - A (t)t)

and the canonical momentum in the position representation is,
Y h
p <= -V
/

Note that in any gauge,
B(t) = mi(t) + Al (t)1)
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However, only in the Coulomb gauge can the canonical momentum be identified as the sum of the kinetic
momentum of the particle and the longitudinal momentum of the field. In a different gauge, the canonical
momentum has no such simple interpretation.

Gauge Invariance of the Kinetic Momentum: The term “gauge invariance” could mean either “form
invariance” or “value invariance” or both. An operator representing a physical observable must not only
have form invariance under a gauge transformation but its value should also not change under a gauge
transformation. The kinetic momentum of a particle, for example, possesses both these attributes. To see
this consider its expectation value,

wOmilyt) = (o) - GAF.0)] [wlt)

Suppose one now performs a gauge transformation,
Anew (F,t) = A(F,t) + VF(F,t)

bow(F.8) = 7.8) - < F(F.1
It follows that,
00| R0
~ O[5 - GAE.0] T 7w )
Wnow O[5 - GAE O 1 new )
W now OB — GAG. 1)~ GVFE.0)] e 1)
{

‘//new(t)|[5 - qu\new(Fat)] |V/new(t)>

Kinetic Momentum Commutation Relations: In the absence of any electromagnetic field, all
components of the kinetic momentum commute,

[mo () mo; ()] =0

In the presence of an electromagnetic field one obtains,
i (hm, (0] = inquos g A Fle))
r

Therefore, in the presence of a magnetic field, different components of the kinetic momentum no longer
commute!

The Puzzle of the Hamiltonian: Consider the Hamiltonian,

Fl(t)J’S‘qTZ:ff’t)hqqﬁ(r‘,t)

The Hamiltonian governs the time-evolution of the quantum state of the particle via the Schrodinger
equation,

in <) = Few )

Under a gauge transformation, the transformed Hamiltonian was found to be,

. . . . L :‘._ - 4 .
Flnew (6)= TAF* —inT - v "A;;;v‘“”]z +dou(F.)

and,
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i % W new (1) = Hrew () ¥new (1))

Therefore, the Hamiltonian is certainly form invariant under a gauge transformation. However, its
expectation value changes under a gauge transformation,

(w(O)|F@)]w(b)
= ()T TR T w(t))
- <‘//new (t)|f[:[(t)f+| Ynew (t)>

= <‘//new (t)|’:Inew (tl Y new (t» + <‘//new (t)|’hf £| Y new (t»

ot
a <‘//new (t)|lrlneW (t] Y new (t»

Therefore, the Hamiltonian could not represent the energy of the particle, which is a physical observable.
In any gauge, if one subtracts the contribution coming from the scalar potential of the electromagnetic
field then one obtains the operator for the energy of the particle. In the present case, the energy of the
particle is given by the kinetic energy term in the Hamiltonian,

b-Ac.0f

2m
which is both form invariant and value invariant under a gauge transformation.

11.1.4 The A.p Interaction
The discussion in the previous Section showed that the operator for the Hamiltonian for a particle in a
classical electromagnetic field in the Schrodinger picture is,

Alt) = W + q¢(f%,t)

Note the distinction between the particle position operator r and the dummy co-ordinate r . One can add

to the above Hamiltonian an external time-independent potential qV(F ) that represents the confining
potential of a single atom or that of a crystal in which the particle resides,

I:I(t) = W + q¢(f,t)+ qV(FA')

Note that the operator for the energy of the particle is in this case,

p-qAr.Y)] | qv(f-)
2m
One can always choose a gauge in which the scalar potential ¢ of the electromagnetic field is zero and

this will be assumed from now onwards. In this gauge, the Hamiltonian operator is the same as the
operator for the energy of the particle.

One can divide the Hamiltonian into two parts as shown below,
I:/(t) = f:lp + I:/I(t)
22

~ p a
Hp =——+V
P=pm (r)
f) ) = - Gp-A(r,t) _ gA(r.t).p _ gA(r.t).A(r,1)
2m 2m 2m
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The interaction between the field and the particle is described by I-AI, (t) The problem with the above
N 52
Hamiltonian is that Hp does not correspond to the total energy of the particle because 5— is not the
m
operator for the kinetic energy of the particle in the presence of the electromagnetic field. And, therefore,
the eigenstates of Hp do not correspond to the energy eigenstates of the particle. Below we derive a form
of the Hamiltonian more suitable for quantum optics.

11.1.5 The E.r Interaction: The Electric Dipole Hamiltonian
In most cases of practical interest, the particle wave functions (e.g. wave functions of electrons in atoms)
are very localized in space compared to the optical modes. Therefore, one may replace /Z\(F ,t) by /z\(Fo,t )

in the kinetic energy term appearing in the Hamiltonian. This is called the long-wavelength
approximation. In this approximation, the Hamiltonian is,

A S 2
p—qAlr.t)

2m
Here, 1, is the average location of the particle. This gives,

F/(t):l—]’é_‘ﬁgf"’t)z +qvi)

One can now perform a gauge transformation to remove the vector potential from the kinetic energy term
of the Hamiltonian. Suppose one chooses,

FF t)=—A(R, ) [F -7,
Then,
Apew(F.t) = A(F,t) — A7y t)

Bnow (T 1) = 0+ . (ﬁ - FO): —E(Fo,t).(ﬁ - FO)

Under this gauge transformation the Hamiltonian becomes,

OA(Fy 1)
ot

~ [_j 4 =, 4 -
A= 2+ qvid) - B0 f - 7,)
Now we have,
H(t)=Hp + Hi(t)
=2
~ p o
Hp =—+V(r
P=0 (r)
Fnle) =~ F 7 JECGout
Since the vector potential at the location of the particle has been “gauged away”, I-Alp now corresponds to
the energy of the particle in the absence of the field. The part I-AI/ (t ) which describes particle-field
interaction 1S now,
~qlF -7, )E.0

The above interaction Hamiltonian is called the electric dipole Hamiltonian.
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11.2 A Quantum Mechanical Approach to Particle-Field Interactions
The final step in building a fully quantum mechanical theory for particle-field interaction is the
quantization of the electromagnetic field and the inclusion of the field energy in the Hamiltonian. We do
this step by step in the discussion that follows. To be general, we include more than one particle in the
discussion. We will start from a classical Hamiltonian and then we will quantize both the particle as well
as the field dynamics.

The charges of the particles are g, and their position and velocity vectors are [, (t) and Vv, (t),

respectively. The charge density can be written as pf(F,t ) = an53 (F-7, (t)) The complete particle-
[04

field Hamiltonian must include the kinetic energy of the particles,

- 2
1o (05 (0) 5 Pal) =90 AT (E10)
X3 MVa () (t)= % o
The Hamiltonian must also include the energy of the field,

deF{% o E(F,1).E(F 1)+ % on:I(F,t).I:I(F,t)}

One might think that the Hamiltonian should also include the potential energy term,

294 ¢(Fa (t)' t)

where, ¢(F ,t) is the electromagnetic scalar potential. This turns out not be the case. To understand this,
we first note that the electric field can be decomposed into its longitudinal and transverse components,
E(F,t)= EL(F,t)+ ET(F,t)
where,
V-eo EL(F,t) = p(F 1) VxE(F,t)=0
=k-E; (k,t)= ekt E; (k,t)= ik ptk.t)
&o k &
So the longitudinal component of the field energy becomes,

[d3F % o E (F,1).EL (F)1)

Pk - o

= I—s— €o EL(—k,t).EL(k,t)
(27)” 2
d°k 1 p(=k.t)p(k.t)
7P 2 gk?

2 4re, |F -r '|

1 44495

2 aﬂ47l'€o ‘Fa (t) — F,B (t}
The longitudinal field energy is just the total Coulomb interaction energy of the charged particles,
including Coulomb self-interaction. Since we have already included this interaction energy in the term,

jdsf{% g0 E(F,)E(F )+ %yoﬁ(f,t)ﬁlﬁ,t)}

-]

10
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the potential energy term mentioned above is not needed. The classical expression for the total particle-
field Hamiltonian is therefore,

~ - 2

H=3 )0, Az, 010) T3P oy B 6).EF b+ uoH(F ), 1)
a 2m 2 2

It can be shown that the above Hamiltonian represents the total energy of the particle-field system and is

time-independent as the total energy of a system of particles and field ought to be.

In most cases of practical interest, one is interested in the dynamics of a single particle (e.g. electron in an
atom), and one would like to exclude Coulomb self-interactions from the description since they tend to
generate infinities (but can be renormalized away if one is careful). In such cases, one may write the
above Hamiltonian for a single particle and the field as,

2m

where V(F ) is the static Coulomb potential of all the other particles whose dynamics have not been

o lt)-gAGarf qV(F(t) + jd3f{% £o Er(F.OEr(F 1)+ % uoHI(F 1) A, t)}

included in the Hamiltonian, and these other particles are assumed to be stationary. Note also that only the
transverse electric field appears in the expression for the field energy. It should be noted that every term
in the above Hamiltonian is gauge invariant. Next, we will quantize the above Hamiltonian.

The quantization of the particle dynamics follows the same path as discussed earlier. We postulate the
following equal-time commutation rules between the particle position and the canonical momentum
operators,

Q) pj t) = ihSgj
Before we quantize the field we need to select a gauge and the most convenient choice is the Coulomb
gauge in which the longitudinal vector potential is zero. The electromagnetic field can be quantized
following the steps discussed in Chapter 5. The field variables become operators. The resulting fully
quantum mechanical Hamiltonian is,

[50)- 0 (00

A- V() + Jd3f{% ¢o Er(F.0)Er(7.1) +%ﬂoﬁl(ﬁt)ﬁ/(?,t)}

2m
In the Schrodinger picture, the Hamiltonian is,
A2 (aV]2
A [,5—QAT(”)} o 3. (1 - DT - S-S
H = o +qV(r)+|d r{E go ET(r).ET(r)+ EyOH(r).H(r)}

In the Schrodinger picture, the Hamiltonian is completely time-independent because the time
development of every operator is now included in the description.

11.2.1 The E.r Interaction: The Electric Dipole Hamiltonian
Consider the Hamiltonian,

A (a2
1Ly e l1 s Ldicri
ZT"'Q (r)+[d r{ago 7(r). T(r)"'Eﬂo (r). (r)}

In most cases of practical interest, the particle wavefunction (e.g. wavefunctions of an electron in an
atom) is well localized in space compared to the radiation modes. Therefore, one may replace the operator

/Z\T (I% ,t) by /Z\T (Fp,t) in the kinetic energy term appearing in the Hamiltonian, where r, is the average

11
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position of the particle. This is called the long-wavelength approximation. In this approximation, the
Hamiltonian in the Schrodinger picture is,

boah)] . :

- L qV(F)+] d3f{% ¢, Er(F)Er(F)+ % yoH(F).ﬁ(F)}

Now we will perform a gauge transformation to get the electric dipole Hamiltonian. Suppose |l//> is a

H =

quantum state of the particle-field system. Under a gauge transformation, represented by the unitary time-
independent operator T , the new state is,
| 4 new> = T| L4 >

Since the Hamiltonian now represents the total energy of the particle-field system, its expectation value
must not be gauge-independent,

<‘// |/:I| ‘/’) = <‘//new |I:Inew|‘//new> = <V’ |7A_+ﬂ:”:+7:| ‘//>
which implies,
Hpew = THT ™
Following the semi-classical approach in Section 11.1.5, we assume,
~ e—;qu\T(Fo,t).(r:—Fo)
The calculation of the new Hamiltonian is a bit tricky since the operator T contains both the particle
operators as well as the field creation and destruction operators. The final answer is,

A A A

HneW =THT*

_5—+qV(r) g -7,) Er( ro)+fd3f{% goE:T(F).E:T(F)+%yolfl(7).lfl(/7)}

d3k 1L\ -

+H—=Z _[gj(k)-(r_rO)]z
2P T 2%

The last term represents the dipole self-energy of the particle. It seems to diverge because the long

wavelength approximation fails for radiation modes with very large wavevectors. In what follows, we will

ignore the dipole self-energy term and restrict ourselves to the Hamiltonian,

A= §—2+ V() -qF -7, ). Er(7y)+ d r{% b0 Er(P)Er(F)+ toH(F). H(r)}
The abovi: HaIAnllton}an h%}s three parts,

H=Hp +H,+Hg

Ap = % +V(F)

Ay =-qF 7o) EGo)

e = 10| sobr(PIEr(F) s L toHPLA)|

One may also write the above Hamiltonian in the Heisenberg picture,

12
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A(t)= Hp(t)+ Hi(t)+ HE t)

Ap(6)-2 v

A1) = -q [F(€) - JEr (o ot)

Ae(t)= | d3f{% goE7 (F,1).Er (7 1) + % o H(F t).HF, t)}

The above Hamiltonian will be used in this Chapter. Note that the electric field appearing in the above
Hamiltonian is completely transverse. We will drop the “T subscript in the remainder of this Chapter.

11.3 A Two-Level System Interacting with Cavity Radiation

Consider the familiar two level system inside a closed cavity which supports a single radiation mode of
frequency @, .

Cavity \‘ l/ o
N . 81

The Hamiltonian is,

where,

I:/=Hp+f://+f:IF

Hp = §_m+ qV(f:): &1ler){er| + £2lez) ez

=& N»] + &9 Nz
fip = hwo[éﬁé . %j

,:II:_q (’%_Fo)'é(’jo)

The interaction part of the Hamiltonian H ;| can be written in a more suitable form. Recall that the electric

field operator (in the Schrodinger picture) is,

é(F):i\/%(é-é*)U(?)

Therefore,

é(?&:i\/%(é-f)&(?o)

The interaction part of the Hamiltonian can be written as,

H, :1particle H, 1particle

= {len)(er [+[e2){ez] 1 {len) (el +[e2) ez |

We assume that the energy eigenstates of H p have a definite parity and therefore,

(e2|Hy|e2) = (e1[Hi]e1) =0

It follows that,

13
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A= Kea)ler| K Jen)lea| | (6-47)
= k6, -k'6_)Jla-a*

where,

Eo&
S =ez)(en|
6_ =ler)(e2]

11.3.1 Hilbert Space
The appropriate Hilbert space now consists of all states of the type,

|'//> - |¢>particle ® |Z>field
For example, for a two-level system in state |92> and 2 photons in the cavity, the state of the combined

system is written as, |l//> = |ez> ® |2> .

11.3.2 Completeness Relation
The completeness relation is,

{|e1><e1|+|92><e2|}®%|’7><”| = Toarticle+field

< matterpart —» <« fieldpart—

11.3.3 An Isolated Two-Level System inside a Lossless Cavity
Consider a two level system coupled to a single radiation mode inside a lossless optical cavity. The
Hamiltonian is,

/:1281 N»] + 82N2 + ha)o é+é+(k5'+ -k &_)(é —é+)
~& Ny + &Ny + hap, 8Ta+\k 6,8+ k é*&_)

The second line follows from the rotating wave approximation. The above Hamiltonian represents a time-
independent completely isolated system. It must have eigenstates and eigenenergies of the form,

H|E) = E|E)
In order to find the eigenstates and the corresponding eigenenergies consider the state |92> ®|n) (i.e.
particle in upper state |ez> and field in number state n) and check if it is an eigenstate of the

Hamiltonian,

Hles)®|n)=(ep + nhwo)|ez>®|n>+k*\/m|e1>®|n +1)
Thus, 62>®|n> is not an eigenstate since H acting an |62>®|n> generates a new state |e1>®|n + 1>.
Next, try |e1>®|n+1>,

H|ey) ®|n+1)=(e1 +(n+Mhwp)|e1) ®|n + 1)+ kvn +1]ey) ®|n)

This also fails. Now, try the linear super position state |¢> =a | 62> ® | n) + b| e1> ® | n+ 1>

14



Quantum Optics for Photonics and Optoelectronics (Farhan Rana, Cornell University)

A|9) = allen + nhay ) e2) ®|n)+ K A+ 1]eq) ®|n+1)]
+b{(e1 + (0 + Dy )|eq) ®|n + 1)+ kvn +1]e,) ® )}
=[a(52 + Nhay )+ bk\/mhez) ®|[n)+ [ak*m+ b(eqg +(n+ 1)ha)o)]|e1> ®[n+1)
If we want |¢> to be an eigenstate of H , with eigenvalue E, then we must have I:I|¢>: E| ¢> . This

implies the following two equations,
alsp + nhawy )+ bk\n+1=Ea

ak \n+1+b(eq +(n+1)he, )=Eb
Proper normalization (i.e. <¢| ¢>=1 ) requires |a|2 + |b|2 =1. The two equations above can be written in a

matrix form as,
o +Nhawg ka/n +1 a a
, =E
k Nn+1 g +(n+MNMhaw, || b b
Let the detuning A be defined as before,
A=¢gy —(e1+hwy )= Ac —ho,

Case of Zero Detuning: Assuming A = 0, the matrix above gives two eigenvalues,
E_(n)=&3+nhwy —|klvn +1
E.(n)=¢&p+nhay +kNn +1

The corresponding eigenvectors are,

1 K
_(n)=— ®\Nn)—— ® 1
-0} 75 leaele) Il e
6.0) =L [oz) @]} +%_|ey) | +1)
72 K
For n =0,1,2,3,..... the above pairs of states and the corresponding eigenenergies constitute the entire set

of eigenstates and eigenenergies of the Hamiltonian H . The only remaining eigenstate is |e1>®|0> with

energy &1. This is the ground state of the system.

Quantum Rabi Oscillations: Suppose one prepares an initial state with the particle in the energy level
|62> and n photons in the cavity. Therefore, at time (t = 0),

(e = 0)=lez)lm) = I} <] (o)

We need to ﬁnd|l//(t )> . We start from,

15
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i
:e_%(gzmmo {cos(' | J|e2>®| >—IWSII’][| |«/ ]|e1>®|n+1>:l
The state of the system oscillates between |62> ®| n> and |e1> ®| n+ 1> , and,

{7

|(e2|®(n|w(t)) ‘2 —cos

[{e4|® (n+1y(t) [F =sin

(1

The particle in the upper energy level emits a photon and then reabsorbs it after some time. Comparing
the above result to semiclassical result obtained earlier where a two-level system subjected to classical
radiation exhibited population oscillations that had the time dependence given by,

cos? ( Ory j
2
we can conclude that,
k
=2 % Jn+1

The semiclassical Rabi frequency depended on the strength of the classical field. In the fully quantum
result, we have the Rabi frequency proportional to the square root of the number of photons in the field.

Question: What if |t//(t = 0)>:|92>®|a> { |a>:c0herentstate } What is |y/ (t)> ?

Vacuum Rabi Oscillations: Consider the case when |1//(t = 0)>=|62>®|0> , i.e. the field is initially in the

vacuum state. We get,

|w<t>>:e"£5{cos("" | ezyelo)-ifam }|e1>®|1>}

These are what are called vacuum Rabi oscillations. The vacuum Rabi frequency is 2|k| / A (assuming

A=0). In this case, the particle in the upper energy level emits a photon via spontaneous emission and
then reabsorbs it after some time.

Cavity Rabi Splitting: A system consisting of a two-level inside a lossless cavity in the non-interacting
case (i.e. no particle-field interaction) has the following energy eigenstates and eigenenergies (assuming
A=0),

16
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Energies States

& |e1>®|0>
£ 1) ®|1)

£ |62)®[0)
&+ ha)o |e1>®|2>
o+ hao, leg) ®|1)
&9 +Nhay le) ®|n+1)
&5 +nhay, e2)®|n)

When the interaction between the particle and the field is present the energy spectrum is as follows,

Energies States

&4 1) ®[0)

{ez—w 9-(0)
Ext |k| |§0+ (0)>
&2+ hay —|k|V2 lo_(1))
€2+ hay +[K[V2 o, (1))

€2 +Nha, —|k|/n+1 lo_(n))
£ +Nhag +|K|y/n+1 o, (n))

The interaction lifts the degeneracy between the states |82>®|n> and |81>®|n+1> and splits the two
degenerate energies {52 +Nhay, & +(n + 1)710)0} into {52 +Nnhao, —|k|1/n+1,82 +nhao, +|k|,/n +1 } This
is called Rabi splitting. For n=0, this is called vacuum Rabi splitting. The magnitude of the vacuum
Rabi splitting is 2|k|.

11.3.4 Optical Transitions and Fermi’s Golden Rule

Consider an energy level coupled to a continuum of higher energy levels via interaction with the cavity
mode,

Hre Np + Y &Ny + hary 878+ Y (km Goma+ kmé+o“-_m)
m m

17



Quantum Optics for Photonics and Optoelectronics (Farhan Rana, Cornell University)

Suppose the particle is initially in the lower energy level and there are n photons inside the cavity. So the
initial state of the system is |eL> ®|n>. The transition rate to the higher energy levels is given by the

Fermi’s Golden Rule,

2 . 2
RT Z%ZKH —1|®<em |H,|eL>®|n>‘ 5(6’/_ +7l0)o —Sm)
m
2 N
:%ZKn - 1|®<em |ka+ma|e/_>®|n>‘25(€L +hay — gm)
m

=27ﬂ2|km|2n 5(8L + hay —8m)
m

Note that the transition rate is proportional to the number of photons in the cavity.

Now consider an energy level coupled to a continuum of lower energy levels via interaction with the
cavity mode,

A Nig + el + 1o 878+ 3 ko 6 mé + ki 6
m m

Suppose the particle is initially in the higher energy level and there are n photons inside the cavity. So
the initial state of the system is |eH> ® |n> The transition rate to the lower energy levels is given by the

Fermi’s Golden Rule,

2 ~ 2
Ry = %gKn + 1|®<em |H,|eH>®|n>‘ 5(8,_/ —hawg - gm)

. 2
=22 5](0+1/® (ormlkind" & mlor) @ ) 5le — hp o)
m

= 277[2|km|2(n + 1) 5(8,_/ —hay — gm)
m

Note that the transition rate is proportional to one plus the number of photons in the cavity. The transition
rate includes contributions from both stimulated and spontaneous emission processes. The factor (n +1)

that results from the quantum mechanical treatment is an agreement with the result Einstein obtained via
thermodynamic arguments well before the quantum theory of radiation was developed.

11.4 Spontaneous Emission Rate for a Two-Level System in Free

Space

We have seen in the previous Section that when the final states are a continuum, one can use Fermi’s
Golden Rule to calculate transition rates. In the examples considered, the photon final state was a single
state but the possible final states for the particle belonged to a continuum. Another useful example is
when the particle final state is a single state but the photon final states belong to a continuum. This is the
case when an atom emits a photon in free space. Consider a two level system interacting with radiation in
free space. Recall that in free space the electric field operator can be expanded as,
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E.0)-v dk i 2ol ) 2 Rl )

We assume that the two 1evel system is located at the origin and oriented such that only the z-component
of the field has a non-zero dipole matrix element.

AZ
ze) y
Ac=g —& T ]
b'¢
The Hamiltonian is, )
Amea Ry + ey VI 5 oy 85 R)a () vi- LK s ®)s, 8 6)+ i )3 ()
( 72') ! 27r j !

where,

wyF)=-a 1 [22% &, ). (eoler) -

Suppose the particle is initially in the higher energy level and the radiation is sitting in the vacuum state.
Therefore,

|Winitial) = |€2) ®|0)
The final state could correspond to any one of the states in which the particle is in the lower energy level
and there is one spontaneously emitted photon in any one of the many radiation modes,

|l//ﬁna1>:|e1>®|1>;}‘j

Since the final states form a continuum one can use Fermi’s Golden Rule. The answer is,

27 . d3k - 2
RL ;TVJ( ) Z k,j@|®<92V4Ae2>C40> 5&2-—hwk-—60
__Z_ d k hwk ~ 21_ _ _
= " V_[ (272.)3 %: q [250 J‘{I (k) <62 |z|e1>‘ Vv 5(6‘2 ha)k 6‘1)
2
_ 2r q2 KeZ |Z| €1 >‘ Ag D( j
- h_z 3 2¢, @) w=As/n

The quantity D(a)) is the density of radiation modes (i.e. the number of radiation modes per unit volume
per unit frequency interval) in free space at frequency @ and is given by,

(02
V4 2C3
The spontaneous emission rate in free space is therefore proportional to the photon density of states in
free space. The photon density of states can be significantly modified in various microscale structures,
such as photonic crystals and microcavities, thereby altering the spontaneous emission rate. In fact, with
the help of suitably designed structures the spontaneous emission can be enhanced several fold compared
to the spontaneous emission rate in free space or even completely suppressed.

D(a)) =
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11.5 Dynamics in the Presence of Weak Decoherence for a Two-Level
System Coupled to a Cavity Radiation Mode

The analysis in the previous section produced the exact eigenstates of the particle-field Hamiltonian.
Decoherence is expected to quickly destroy the linear superposition in the eigenstates,

0-(m)=—% | lez) @) -

*

k7|e1>®|n+1>}

e LA

and the state of the system would collapse into either |52>®|n> or |€1>®|n+1>. In the presence of

decoherence, one has two options:
a) Use a suitable basis set to expand the density operator
b) Work in the Heisenberg picture

The former is useful when the decoherence rate is not much faster than the vacuum Rabi splitting 2|k | / 7

(case of weak decoherence) The latter is more generally applicable and useful but is not as transparent as
the former.

11.5.1 The Density Matrix Approach

Suppose the density matrix of the system consisting of a two level system interacting with a single
radiation mode of a cavity is ﬁ(t) Suppose the initial state is |e2> ® |n> Therefore,

Ht=0)=[ez) @) (n] 8]
The Hamiltonian is,
I:/Z &1 N»] + 82N2 + ha)o é+é+(kGA+é + k*é+6_)
Given the initial state, it is reasonable to assume that the Hilbert space relevant to the problem consists of
only two states, |62> ® |n> and |e1> ® |n + 1>. One can therefore express the density operator in the basis

consisting of only these two states. Let,

ez} @) SEIEN

And in the matrix representation,

R 00
ple=0)= ez} eln) (e 3|
The equation for the density operator is,

_oplt) [ -
ih—==H, plt
p [A.5(0)]
On taking the matrix elements of the above equation with respect to the basis states one obtains,

%2 [ A1) ks A )] - 22210

ot
a/’;_?(t):[%A_Tijpm()——k Vn+1[pa(t)- 14 (t)
5%’;_;(1‘) [ hA—Tijp21()+ —kyn+1[pgo(t) - p14(t)]
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We have included the effects of decoherence in the above equations in the off-diagonal components of the
density matrix. We have assumed that decoherence collapses any superposition between the states

|62> ® |n> and |e1> ® |n + 1> . The solution of the density matrix equations, subject to the initial condition,

and assuming zero detuning, is,
_t
2T,

2
where,

2
2 1 |k|
0=[0%2 | — Op =250 01
\/ R 2T2] R=€, NN

As t — oo, the off-diagonal components of the density matrix go to zero, and,

12 0
0 1/2}

cosQf + L
20T.

sith}
2

pzz(t)=1—,011(t)=§+ ©

Ht )=

11.5.2 Decoherence in the Heisenberg Picture
Adding the effects of decoherence in the Heisenberg picture in a quantum mechanically consistent way
requires some care. We start from the non-interacting Hamiltonian for a two level system,

H=€1 N1 + 82N2

one can write the following Heisenberg equations for N1 (t), Ny(t), 6. (t) and 6_ (t),

dNy(t) _ Ny (t) =0
at dt

do;;(t) zé(gz —81)&+ (t)

dé_(t) = ep—e)e (1)

We know that decoherence makes the off diagonal components of the density matrix go to zero. So we try
to model decoherence phenomenologically by modifying the equations for & (t) and 6_ (t) and adding

(t)

decay terms as shown below,

M =i£&+ (t)—

o+ 1)
dt h Ty where,
dé‘_(t) =—i£6 (t)— o_ (t) Ae= &9 — &1
dt no T,

The decay terms destroy the quantum mechanical consistency of the equations. To see this, note that,

G, (t+A)=6, (t){n(:‘%—;—z]m}
6_(t+At)=6- (t){1+(—i%—_riJAt}

2

Multiply the above two equations, and obtain their commutator keeping all terms that are of first order in
' Atl ,
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2

(6. (t+ AtL6_ (t+ A0)] [, ()6 (¢] {1—_’_3& }

= Ny (t + At)— Ny (t + At):[N2 (t)- Ny (t)]{ 1 —TiAt }

= ( Ny (t+At) )~ (N (¢ + At))# (K (£)) - (Ny (2)
But since,
aNi(t) o dNa(t)
ot ot

The result <l\72 (t+ At)> - <I\71 (t+ At)> ;t< NZ (t)> - <I\71 (t)> cannot be correct.

One can restore quantum mechanical consistency of the equations by adding Langevin noise sources to
the equations for &, (t) and 6_ (t ),

o (15 007 8. 04F e e
% (t)=-i% &_(t)—%&_ (t)+F (t) oot E. o =F

The exponential factors el e convenient, but not necessary, since they will make the algebra simpler
in Sections that follow. As always, we make the assumptions,

a) Noise operators act in their own Hilbert Space.

b) System operators at time { commute with the noise operators at time ' where t'>f.

o) (F.(0)=(F_(t))=0

d) </f+ (t1)F- (t2)>=A(t1)5(t1 ~tp) and <’3- (t1)F, (f2)>=5(t1)5(t1 ~t)

o ([F. t)F ) =[A®)- Bl )]st -t2)

The solution of the equations to order At in time is,
t+At .
Golt+at)=6, () 1+[i25-Llat [+ ] F(e)e™lar
/. t
t+At R
ooltr =6 (0] 14122 - ) [ £ egeieotan
no T ¢

We now find the values of A(t) and B(t) as follows.

1) We first multiply the first equation by the second equation from the right side and note that,

No(t)= 6. ()5 (t)
to get,

N N t+At L, t+At S
Nz(t+At)=N2(t){1—%At}&+ (t{ +j F_(t")e "ot dt}{ +j F+(t')e’”0tdt}6-_ (t)
t t

2
t+At  t+At n n . ' . B
+ +j at’ +-[ dt" F+ (t’)F_ (tu)ela)ot e—la)ot
t t
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We take the average on both sides of the above equation to get,

At<%2t(t)> - —%<N ()>At+t+jAtdt’t+jAt dt" <F (t )ﬁ_(t")>e"‘"0t'e"”ot"

<M> _ _£</\“/2 (t) + Alt)

dt T,

= Al)= 2 (Rylt)) + <M> - 2 i)
This implies,
(£ 07 ) -a05(-0)-| 2 () +( 220 e

2) We now multiply the first equation by the second equation from the left side and note that,

o). (0,
to get, )
o) - 2 () o (%0) - 2 ()

Ts dt
and therefore,
- = (+)\ _ Y _ 2 /9 dN'] (t) '

(F-OF )=BE)st-t)= E<N1(t)> +< - >}5(t —t)
3) Finally, we find commutator at time f + At

[6, (t+At)é_(t+at)]=[5, (t).6_(t) ](1 - %At]

2
N t+AL g0 Jt+At dt"[F+ (t)E. (tu)]eiwo(t'—t")

= [y e+ A6~ Ry e+ 2 | [ () Ry (t)](1 —%At]

J‘ t+At dt jt+At dtﬂ [F+ (t,), FA_ (tu)]ei(t)o (t'—t“)
In order to preserve the commutation relation we must have,
- - " " dN2 dN'I 2 \ | ] 2 | ' ] (1]
F F. —£——+—N -—N. -
F0E )[R0 )] T 2Ry 0)- 2| ot

Similarly, one can show that,

<’3+ (t1)F. (¢ )> = <’3— (t1)F_(t )> =0

In most cases of practical interest, when decoherence is faster than the rate of change of the populations,

one can use the following approximations,

(B O €)=A05 1)~ 2 (Rp(0)o t-¢)
(£ ©F (r)>=s(r)a( _t)= %<~1 W)ote-t)

[0 OR[BOAE))R T 0-f 0] se)
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11.5.3 Dynamics in the Presence of Strong Decoherence for a Two-Level System
Coupled to a Cavity Radiation Mode

We now consider a two level system interacting with a single mode of radiation inside a cavity. The
Hamiltonian is,

I:I=€1 N»] + 82N2 + ha)o é+é+(k6'+é +k é+OA'_)

4---1 &2
o . 6‘1
Earlier we saw that in the absence of decoherence the exact eigenstates and eigenenergies of the
Hamiltonian could be obtained. Here we consider the case when decoherence is large. In the presence of

decoherence, the Heisenberg equations are,

Cavity

9l) i )a0)-k'a )]

dl\(?t(t) ZL[k 5. (04 ()K" ()6 (t)

dift(t) z( % _%} &.(0)-L i & (0| Ko () - Ry (O] + £, (!
di}(t) _ (_ ﬁ_a 5_(0)+ Lk [ R (6) - N (0)Ja () + £ (e~
B o)L 60

B i O+ k)

Start from the equation for &_ (t ) ,
ds_(t) ( .As 1), i [ & a6 L B (it
——— = —i———|6_(t)+—k|No(t)- N4lt)lalt)+ F_(t 0
(it Lo kol 0]a )£ e
Because of fast decoherence, &_ (l‘) is expected to reach its steady state value pretty fast. But we need to
factor out the fast time dependence before we find the steady state value. We write,

5-0= 7 (06
and then find the equation for y_ (t) and set it to zero,
0= T2 ({47 L 202 k[l a0 + )
This gives,
L [ (t) - Ny (8)]a ()™ + inF-_(t)
(hwy —As)+in/T,
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L5 () kRO ROl i (e
(h —Ag)+ in/Ty  (hew —Ag)+in/T,
We use the above value of 6_ (t ) in the equation for the field operator to get,
2 ~ ~ * A ;
dalt) i sy, K [Ma@-Re)] 4y, KF (e
gt~ eodlt) i (hwy — M)+ i/ T, a0+ (g —As)+ /T,

Consider the average value of the second term on the right hand side,

2 ([0 Rt

h (hoy —As)+in/Ty

K T, - (hwy —Ag) A
:|F|z ((ha)o T2 + ( = 2J<[N2(t)—N1(t)]>

~Aef T (o —Asf + (1/T,)
= g(t)-irm,
Here, g(l‘) can be identified with the gain provided by the two level system and Aw, can be identified

with the change in the cavity mode frequency due to interaction with the two-level system (also called
frequency pulling). We will ignore this frequency shift. We write the gain term as,

K W N PIPN
I (nwe - Az + (/T [%2(0)- 0] g 00 )

gq is called the differential gain. The equation for the operator ar (t) can be obtained similarly. We

finally have,
dalt
9B 1)+ 94 (0)- )] 8 0)+ Bl

B g 0+ 08" O l)- Rl £ '

where we have defined two new noise sources,
- K F_(t)
F, sp (t ) = :
(hwp —Ag)+in/T,
,3;;) (t)= kF, (t) _
(ha, —Ag)—in/T,
The correlation functions of the noise sources are,

o N .
<Fs’° ot )>:|k| (ho <—A8) (h>/T ¥ 2|7L (v, —Ai);(h/Tz)2 Ralthott-1
(Fal0F0) - <F WAE) W (o) ot )

o =8l + (TP (hwy —As) + (T,
Their commutator is,

Fop ) 6)] = K (h%<[FA (t)) ; (2%2 o |k;i _ A(Z/)Z) e (R () R (6ot - £)
— 294 R t) - Ry(6)ls(e - )
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Photon Number Equation: Using,

98 _ ity + gg [Fia () - R(t)Bt)+ 70! Fo ()
dad—t() Ia)o ()+ gq a t)[Nz(t) N1(t)] +ela)o ,Es_;)(t)

we can derive an equation for the photon number operator A(t) = &" (t)a(t),

dn(t o t ~ it ~

IO _ 294l - Ano]i) + {87 O Ay + Fipree 400

The term 2ng2 (t)A(t) on the right hand side represents stimulated emission. The term 2ng1 (t)n(t)

represents stimulated absorption. The spontaneous emission part is hiding in the noise term,
{é*(t)ﬁsp(t)e"”of +F()a (t)e'wot}

and comes out when we take its average. So the noise is not zero-mean. Note that terms like

<é+(t)lesp(t)> and <lfs4b(t)é(t)> are not trivial to evaluate, since a(t) depends on Ifsp(t') for all times

t'<t. To see this explicitly, integrate the equations for the field operators from t — Af to t and then take

the limit Af — 0. This procedure gives,

limit t o _
3(t) = At — At)+ [t Fop (t)e "0
A= 1 g A8+ far Pl
ey limit o oo et
a (t)_M_)0 a*(t At)+t_jAct1t Fop(t')e

Now we evaluate,

<I3§,(t)eiwoté(t)> lwot<F+ (Ol - )> @0t fdt< (t)lfsp(t')>e_i“’0t'

t—At

K W, (Rip(t)) = g (R 1)

I (heo Al + (T,

Similarly,

<é+(t)ﬁsp(t)e—fwof> _HK Lk TP (R (1))

h (ha)o —Ag)z +

And therefore we find,

2
R - i - ot ~ k ~
(3 (Fsp 067" + £y Oi0ta()) - 2 UILE A
I (hoo ~ M) +(0/T,)
=29¢ <N2 (t)>
The answer is indeed the average spontaneous emission rate. Since the last term in the photon number
equation is not zero mean, one can define a zero-mean photon number noise source as,

Fa(0)= {8* Bspltle 0t + Fip e a(0)} - (& (0o e ~0" + P (1e'ta()
And write the photon number equation as,

IO _ 294 [a(0) - fx )]0+ 204 (Rlt) + £, 1)

The correlation of the photon number noise source is,
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(Fa0)Fat) = [2aa (R (O)((0) + 1)+ 294 (Ra))(A(0)| 5t - £)
The above correlation function shows that the every process (stimulated emission, stimulated absorption,

spontaneous emission) contributes shot noise to the photon number. This fact will be used later in
understanding the fluctuations in a laser.

11.6 Non-Radiative Transitions
We now include non-radiative transitions in the rate equations for a two-level system. We will work in the
Heisenberg picture. Starting from the non-interacting Hamiltonian for a two level system,

H =& N1 + £2N2
One can write the following Heisenberg equations for I\71 () and I\72 (t),
aNo(t) __ Na(t)

ot T,
dNy(t) _ No(t)
at T

The question arises if the above equations are quantum mechanically consistent? Let us check,

() _ Na(t)

dt T

o Rt + A=A, (t)[1 _ﬁ_t]
1
Multiply the above equation by itself to get,

(- 0)f a(0F 12

Ryt + A) =y (t)[1 _ZTA:J

The above two equations for Nz (t + At) cannot both be right, and our analysis is not correct. We modify
the original equation and add a zero-mean Langevin noise source as follows,

dip(t) _ Nolt) E(t)

ot T,

Note that IEN(I‘) is Hermitian and therefore commutation relations cannot be used to determine its

properties. The above equation implies,
t+At

N . At N
e+ 0)=g) 1= 5 |- T )
t
Multiply the above equation by itself to get,

Ryt + at) = i 0 {1—%—2&«) [1—A—t};+ﬁfﬁN<ﬂ>dt1
T4 T4

+ ] aty [ dty Ay () P (t2)
Take average and assume,
<FN(t1)FN(t2 )>=C(t1)5(f1 ~tp)
to get,
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(e + at) = (1 1) (1 _&J +olt) At

Ty
If we want,
(Rt + a0} (R (t)>[1 - %fJ

we must have,

c(t)= =

Thus, non-radiative transitions seem to have a shot noise behavior. This should not come as a surprise
since transitions occurs randomly in time.

= average relaxation rate

We also want,
Ny(t)+ N3 (t) =1

3%[/\71(1‘)”(’2(1‘)]:0

This is possible only if the equation for N1 (t ) is,

afa(t) _, NZ(t)+li‘N(t)
ot T,

11.7 External Pumping

An external pump (usually a high power laser) can be used to transfer particles from the lower energy
level to the higher energy level. This is achieved in a three level scheme as shown below. The relaxation
rate from level 3 to level 2 is assumed to be very fast so that all particles transferred by the pump from the
lower level into the uppermost level relax into level 2 immediately.

A \ 6'3
&2

Pump

|

In the presence of pumping, the equations for the two-level system are,

dNy(t) _Ru(t) N;1(f>_ﬁN(t)+ Folt)

dt T,

o) N%,f”* N‘;ffLﬁN(t)— o )

Here, IEP (t) is the noise source that models the noise in the pumping process and its correlation function

can be found using the same methods as were used in the case of IEN (t) and the result is,
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()

<Fp(t1)Fp(t2)>: )

The equations for the populations,

) N;sf) _ N;1(f)—ﬁN(t)+ o)
dNy(t)_ Ky t), Ny (t)+,3N(t)_ Fol(t)

dt Tp T4

plus the equations for coherences,

0 s per

ds (1) :(_,g . %jg (t)+£(t)

dt

complete the description of an isolated two-level system.

5ty -tp)

11.8 A Two Level System Interacting with Cavity Radiation: The Full

Set of Equations
Consider the familiar two level system inside a closed cavity which supports a single radiation mode of
frequency @, . The Hamiltonian is,

I:I=€1 N»] + 82N2 + ha)o é+é+(k6'+é +k é+OA'_)

Cavity

Wavequide

Z=

v

We include the effects of cavity loss, relaxation, decoherence, and pumping in the Heisenberg equations.
The resulting equations are,

IA) BBt 03601 05 0] At ol

dNq(t) _ Nq(t) N N (t) I [k&+ (t)a (t)_k*é+(t)a“_(t)]+ Fu(t)-Fo(t)

dt T, T 7
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%t(t) = i%_%j 6+(t)—%k* a* (O] Ko () - Ry (0)] + £, (e’

dt 5
i(t) —| __ ' 15 _i * o i —lwopt
i = —iw, TPJ (t) hk (t)+ . Syt
dat(t

Here,

Sin(t)=\Jvg b (z=0,te~"!
$; ()= Jvg b/ (z=0,t)"™"

The photons coming out of the cavity are described by the equations,

R » R w 1 . R w
Soutltle 0! = [ugbrlz = 0,070 F B(t) - JrgbL(z = 0.0l 1oo"
R . R , 1 . . .
81ur(061°! = Jrghy(z =006 = F 8°(0)-vghi (=01

p

The above equations constitute the complete set of equations needed to describe the quantum behavior of
a two-level system in an optical cavity.

11.9 Cavity Enhanced Spontaneous Emission and the Purcell Effect
In the presence of strong decoherence we saw that the spontaneous emission rate in a closed cavity is
given by the relation,

K~ s
Ry =2gq =2 2

12 (o~ Ac/h)f + (1T,

P PR 62
- 6'1

Cavity

Since,

. - 2
ARCAEEY

2 2 hao,
|k| -9 (2«905)

the coupling parameter |k| can be made large by decreasing the size of the cavity (and therefore

the mode volume). We assume that the two-level system is oriented such that it has a non-zero
dipole matrix element with only the z-component of the cavity field. We also assume that the
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cavity field is polarized in the z-direction at the location of the two level system. Define mode
volume Vp as,

1 =y =
V.o U*(rp).U(ry)
p
Then the spontaneous emission rate on resonance (i.e. @, = Ag/h) becomes,
1T
Rl« CaV1ty | | T2

1% (oo 80/ + (1T,
_229% [(e2/4 &)’ [h% ] { a7, J

72 3 2e0 J\ eV

It is interesting to compare the cavity spontaneous emission rate to the spontaneous emission rate
in free space.

2292 [fealden)” ( ae
R, (Free space)= -7 ( j D(a)lw:Ag/h

K2 3 2¢,,
The spontaneous emission rate in the cavity will be larger provided,
37T,
eV g D<w10)=A€/h

The result above is valid provided the decoherence time T, is much shorter than the inverse vacuum Rabi

frequency h/ 2|k | and also much shorter than the cavity photon lifetime 7z, i.e.,

Below we consider what happens when the cavity photon lifetime becomes shorter than the decoherence

T <<

< N , T
2l
We consider a two level system inside a cavity coupled to waveguide, as shown below. The strongest
coupling is not between the cavity field and the two level system, but between the cavity field and the
waveguide. As a result of this coupling, the cavity mode becomes hybridized with the propagating modes
of the waveguide.

Cavity

Wavequide

MZ == )

In the first calculation step we will ignore the coupling between the cavity field and the two-level system
and only consider it later as a perturbation in order to calculate the spontaneous emission rate. Consider
first the Heisenberg equation for the cavity field operator,

v
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dat) [~ i) Y9 b (2 = 0,t)e !
at ZTp Tp

We know that,

R ) —Bo+AB/2 —io(B)t Wp +Aw)/2 —iot
BLlz=0t)p ot =1 7 I g LT A0, ()8
~Bo—AB/2 2 JL Vg wo A2 27 JL

Here the subscript “L ” has been introduced in the notation for the field operator to explicitly indicate that
the operator is for the mode moving in the left direction. We get,

" o +AB/2 —iot
dl) (g lat)e T 25 ()0
at 22'p VaTp  wy-AB/2 2 \/Z

The solution for ¢ large is,

. 1 a)0+Aa)/2 da) I . e—ia)t
alt)~ L — - a; o) ——
() varp a)o—jAa)/Z 27 (a)—a)o)+l/27p L( ) JL

The relation between the right propagating modes and the cavity field is,

br(z =0,t)e '@l = 1 a(t)- b, (z =0,t)e "ot
VgTp
Using the value of the cavity field calculated above, and valid for large times, we obtain,
L a)o+Aa)/2da) . e—ia)t L a)o+Aa)/2 da) (a)_wo)fp_l/z . e—ia)t

Ewo—jAw/ZZaR(w) JL :_EwO—Aw/zz(a)—a)o)pr/z () JL
-, —i/2
:>éR(a’)=—Ew_%)):+Zzal_(a))

The above equation expresses the relation between the operators for the right and left moving modes. We
use it to get,

. 1 wo +Aw/2 dow i A oot
a(t)z - L o7 ( ) 2 aR(w)
VgTp  wy-Aw2 27 (@—o)—i/21p

In the Schrodinger picture,
1 La)o +Aa)/2 d(l) l
VaTp  wy—Ac/2 2 (a)— a)o)—i/ZTp
The above equation shows that the cavity mode is “made up of” waveguide modes of different
frequencies that come into the cavity, resonate for a while, and then leave. The expression above also
shows that the waveguide modes with frequencies @ close to the resonance frequency @, of the closed

G~

cavity mode are the most important. We now calculate the spontaneous emission rate. The interaction part
of the Hamiltonian can be written as,
. L 1 C()O+Aa)/2da) I
(ka+a+k a+0'_)=— L — .
VaTp  wp-Aa/2 27 (a)—a)o)—l/er

o[ @erae2 g, i ) 1
+Kk i L — - aplow)o_. —
VgTp wO—IAw/Z 2r (a)—a)o)+l/21p R( ) JL

1

6.4r (o) T

The initial state of the system is,
|Winitial) =|€2) ®|0)
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The final state could correspond to any one of the states in which the particle is in the lower energy level
and there is one spontaneously emitted photon in any one of the waveguide modes moving in the right
direction,

R
|Wfinal) = |€1) ®[1)
Using Fermi’s Golden rule, the spontaneous emission rate becomes,

Aw/2
Ry (CaVIty) 2|k| ot 621a) ”/Tp 52 —ha)—£1)
wo-20/2 27 (01— )P + (122, P
=2 |k|2 (1/27P)

h? (@, —Ag/h (1/27,,)2
The spontaneous emission rate on resonance (i.e. @, = Ag/h) is,
2
6
R (Cavity) = 27; I Kez 4 e1>‘ oo ‘p o << T
n 3 2¢, J( & Vp 2K

We can again compare the cavity spontaneous emission rate to the spontaneous emission rate in
free space.

Ry (Free space) 22 9oz llenl” (a0 )
J\Free space _h_z 3 280 a)lszg/h

The spontaneous emission rate in the cavity will be larger provided,
67
p
> D(a)xa):As/h

The enhancement expressed by the expression above is called Purcell enhancement. We can also write the
condition for Purcell enhancement in terms of the cavity quality factor Q,

6Q
> D(wla)zAg/h

7w, eV
A large Q cavity with a small mode volume V), can enhance spontaneous emission rates by factors as
large as 50-100.

ﬂng

In the more general case where the decoherence time and the cavity photon lifetime are comparable and
both are much shorter than the inverse Rabi frequency, the following result can be derived with little
additional effort,

2 wo+haf2 4, 127, 1T,

T ,T2 << —
12 wp-n02 T (@-wo ) + (120, P (0-As/h)? + (1T, { 2K
The integral over frequency can be performed in the complex plane and the final result is,

| | (127, +17,) {T o
72 (0o —Ac/h) + (20, + 1T, pri2 2|k|

22 8° [(ezlelen)” (0o (3 1
== ° {a)o = Ag/h
h 3 2e )\ meVy | Y2z, +1/T5

Ry (Cavity) =

R 1 Cav1ty
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It can be seen that the above expression reduces to the correct results in the two limits, Ty << h/ 2|k| ' Tp

and 7, << h/ 2|k| , T, discussed earlier.

11.10 Weak and Strong Coupling Regimes in Quantum Cavity
Electrodynamics

The above discussion shows that matter-photon interactions in a cavity can be categorized as follows:

i) Strong Coupling Regime: Here,

and quantum mechanical coherence between matter and radiation degrees of freedom is important.

i) Weak Coupling Regime: Here,
26 11
— << —+—
h 27 p T2
and quantum mechanical coherence between matter and radiation degrees of freedom is not important. In
this regime, matter and radiation interactions can generally be described in terms of stimulated and
spontaneous transitions.

11.11 A Collection of N Two-Level Systems Interacting with Cavity

Radiation
Consider a collection of N two-level systems interacting with a single radiation mode inside a cavity and
described by the Hamiltonian,
~ N N - apa N KAt A
H= 21{81 N1./ +&2 N2j}+ha)08 a-+ 21{‘(G+j a+ka G_j}
j= j=

where, i N
Nyj=[er); ;(er] Naj=le2); j{ez|

6-+f:|62>j j<e1| 6-—/=|e1>j j<e2|

Cavit

E_I%':— | Waveguide U
17 |

v

If we define,
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N N . N N .
Ni=2% Nyj Ny =3 Ny;
j=1 j=1
N N N /. N N
:>N1+N2= Z (N1j+N2j ): Z1=N

j=1 j=1
~ N ~ N ~
0,=2 04 o_=20_j
j=1 j=1

then with these definitions, the Hamiltonian can be written in the following familiar form,
I:I=6‘1 N—] + 82N2 + ha)o é+é+(k6'+é +k é+6'_)
The only fact one has to bear in mind when working with the above Hamiltonian is that the sum l\71 + Nz

equals N in the case of N two-level systems and 1 in the case of a single two-level system. The
Heisenberg equations, as given in the previous section, remain unchanged.

The initial state of the system is specified by specifying the initial state of all the N two-level systems as
well as the state of the radiation mode. For example, if the density operator of the j-th two-level system at
t=01is p j (l‘ = 0) , then the density operator p (t = O) for the full system is given by,

p (t=0)=p1 (t=0)@ 5 (t=0)® p3 (t =0)®......0 py (t =0)® fraqt =0)
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