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Chapter 1: Review of Quantum 
Mechanics 
 
1.1 Postulates of Quantum Mechanics  
 
1.1.1 Postulates One, Two, and Three 
There are several postulates of quantum mechanics. These are postulates since they cannot be derived 
from some other deeper theory. They are known only from experiments. The first few are:  
 

1) The state of physical system at time ‘ t ’ is described by a vector (or a ket), denoted by )(t , 

that belongs to a Hilbert space. The state vector captures all information that is knowable about 
the physical system.  

2) Every measurable quantity A (like position or momentum of a particle) is described by an 

operator Â  that acts in the Hilbert space. 
3) The only possible out come of a measurement of the quantity A  is one of the eigenvalues of the 

operator Â . 
 
Hilbert Spaces 
A Hilbert space is just a fancy name for a linear vector space with certain properties. Vectors 

wuv ,, ,… belong to a Hilbert space   if and only if: 

(1) For some operation, denoted by ‘ ’, the vector uv   belongs to   if v  and u  belong to 

 . 
(2) vuuv  . 

(3)     wuvwuv  . 

(4) There is a ‘zero vector’ 0  such that vv  0 . 

(5) For any v  there exists a vector v  such that 0 vv . 

(6) For a complex number  , v  if v . 

(7) For a complex number ,    uvuv   . 

(8) For complex numbers ,,     vvv   . 

(9) The inner product of two vectors v  and u , denoted by vu , has the following properties: 

       (a) 
*

uvvu  . 

       (b) 0vv , with equality if and only if 0v . 

      vv  is called the magnitude of the vector.  

(10) An operator Ô  acting in the Hilbert space   has the property that for any vector v  belonging 

to vÔ,  is also some vector belonging to  . 

 
Examples: There are many examples of Hilbert spaces besides the Hilbert space of quantum states. For 
example, the space spanned by 2-dimensional column vectors form a Hilbert space in which the vectors 
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are column vectors, 


















d

c
u

b
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v , ,… where  ,...,,, dcba  are complex numbers. The inner product 

vu  is   







b

a
dc ** . The operators are 22  matrices 








hg

fe
. 

 
Properties of Operators in Hilbert Space  

Eigenvectors and Eigenvalues: A vector v  is an eigenvector of an operator Ô  if and only if 

vvO ˆ and the complex number   is called the eigenvalue corresponding to the eigenvector v . 

In general, an operator Ô  can have many eigenvalues ....,, 321  and the corresponding eigenvectors 

are ,...,, 321 vvv  i.e. kkk vvO ˆ . 

 

Adjoint Operators: The adjoint operator Ô  corresponding to Ô  is defined by the following relation, 
*ˆˆ uOvvOu                                                    (1) 

Let vOw ˆ . The left hand side in (1) is then wu . But (by property 9(a) of Hilbert spaces) 

*
uwwu  . Comparing with right hand side of (1) we get  Ovw ˆ . We can state the properties 

of bra w  corresponding to ket w , 

(a) if uvw    then uvw **   . 

(b) if vOw ˆ  then  Ovw ˆ . 

 

Hermitian Operators: An operator Ô  is Hermitian (or self-adjoint) if and only if OO ˆˆ . In quantum 
mechanics, operators corresponding to observables are always Hermitian since Hermitian operators have 
real eigenvalues. 
 
 
Basis Vectors 
Any set of vectors that belong to   and ‘span’   (i.e. where any vector in   can be written as a sum of 
vectors belonging to this set) is called a basis set. The minimum number of vectors in a basis set is called 
the dimentionality of  . For example, if nvvvv ...,, 321  span an n-dimensional Hilbert space then 

any other vector w  in   can be written as 


n

k
kk vaw

1
. Usually basis sets are chosen such that all 

vectors in it are mutually orthogonal. For example, for the Hilbert space of 2-dimensional column vectors 

a basis set is 















1

0
,

0

1
.  

Orthonormal Basis: In the expansion 


n

k
kk vaw

1
 the expansion coefficients ja  can be determined 

by multiplying both sides with the bra jv , 
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Since for orthogonal basis set 0kj vv unless kj  , 

jj

j
j

jjjj

vv

wv
a

vvawv





 

If the basis set is orthonormal then jkkj vv   and in this case, wva jj  .  

 
Complete Basis: The completeness of an orthonormal basis set (i.e. the fact that the vectors in the set 
span the entire Hilbert space) is usually expressed as, 

1̂
1




k
n

k
k vv     (2) 

Note that a combination of the form wu  is actually an operator. To see this note that if wu  acts on 

any vector v  one obtains   vwvwu   which is another vector, and this is a property of an 

operator (property 10 of a Hilbert space). The operator 1̂  is the identity operator with the property that for 

any vector vvv 1̂,  (i.e. 1̂  does ‘nothing’). To see why for a complete basis k
n

k
k vv

1
 equals 

1̂  apply it to any vector w  and see the result, 

k
n

k
k

n

k
kk

n

k
kk

vwv

wvv

wvv





















1

1

1

 

but, as found earlier, kk awv   is the expansion coefficient when w  is expressed in terms of the 

orthonormal basis set, 

  
 

n

k

n

k
kkkk wvavwv

1 1
 

 

Thus, wwvv
n

k
kk 








1

. Therefore, 1̂
1




n

k
kk vv . 

The eigenvectors of a Hermitian operator can be chosen to be all orthogonal and they also form a 
complete set.   
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1.1.2 Postulate Four and Measurement of Physical Quantities in Quantum Mechanics  
Suppose Â  is an operator corresponding to a physical quantity A  of a physical system. And suppose the 
quantum state vector of the physical system   is (somehow) known. The question then is if A  is 

measured experimentally what would be the result? Postulate 3 tells us that the result can only be one of 

the eigenvalues of the operator Â . Suppose all the eigenvalues of Â  are known and the corresponding 

eigenvectors are also known, and they satisfy kkk vvA ˆ  where .,...3,2,1 nk   The question then is 

which eigenvalue of A  is going to be obtained upon measurement. The answer given by quantum 
mechanics is that one cannot know the result of a measurement before making the measurement but when 

a measurement is made the probability for obtaining the result k  is given by 
2

kv . This is also a 

postulate of quantum mechanics. 
 
Since the eigenvectors kv  form a complete set one may expand   as, 

 k
n

k
k va

1
  where  kk va   

Just before the measurement,   is in a ‘linear superposition’ of the eigenvectors of Â . When a 

measurement is made of the quantity A , the result k  is obtained with probability 







22 kk va . 

The probabilities of all possible measurement outcomes must add up to unity, and this is easy to show. 
Start from 1 , 

 

2

11

1

1̂

1













n

k
k

n

k
kk

n

k
kk

avv

vv









 

 
 
1.1.3 Postulate 5 and Collapse of the Quantum State upon Measurement 
Consider a physical observable A  and the corresponding operator Â , which has eigenvectors and 

eigenvalues given by kkk vvA ˆ . The quantum state   in terms of the eigenvectors of Â  is 

assumed to be k
k

k va . Suppose a measurement of A  is made and the result j  is obtained. The 

question is what is the quantum state just after the measurement? The answer is not trivial. The quantum 
state of an object contains all the information that can be obtained about the object by making any kind of 
measurement. When some information has been obtained by making a measurement, the quantum state 
after the measurement must reflect this extraction of information. If the eigenvalue j  was measured then 

the quantum state just after the measurement must be jv  (i.e. the eigenvector corresponding to j ). If a 

second measurement of A  is made just after the first measurement then the result j  will be obtained 

with probability one, and this is certainly aesthetically pleasing. This sudden collapse of the quantum state 
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from 
k

kk va  to jv  upon measurement is called collapse of the quantum state and is a postulate of 

quantum mechanics.  
 

Case of Degenerate Eigenvalues: Suppose the first two eigenvalues of Â are identical (i.e.   21

). The quantum state before the measurement of A  is k
k

k va . What is the quantum state after the 

measurement if the result   is obtained? In this case, since the measurement result cannot distinguish 
between 1v  and 2v , the quantum state after the measurement must lie in the eigen-subspace 

corresponding to the eigenvalue  , and is given as, 

 
 

2
2

2
1

2211

aa

vava




 

In more technical language, the measurement projects the quantum state into the eigen-subspace 
corresponding to the measurement result. 
 
Mean Values of Operators 

The mean value of an operator Â , with respect to a quantum state  , is defined as the mean value of 

the observable A  obtained by making measurements of A  on many identical copies of the quantum state 

 . If Â  has eigenvectors and eigenvalues given by, kkk vvA ˆ , and   expressed in terms of 

kv  is 
k

kk va , then the probability of obtaining k  is 
2

ka . Therefore, the mean value of A  

with respect to the state   is 
k

kka 2
. This can be written more generally as  Â  or just Â .  

 
Some Common Observables 

(1) Position of a Particle: The operator x̂  corresponds to the position of a particle in 1 dimension. 
Eigenvectors of x̂  are x  with corresponding eigenvalues x  (i.e. xxxx ˆ ). 

Orthogonality relation: )'(' xxxx    

Completeness relation: 1̂



xxdx  

(2) Momentum of a Particle: The operator p̂  corresponds to the momentum of a particle in 1 

dimension. Eigenvectors of p̂  are p  with corresponding eigenvalues p  (i.e. pppp ˆ )  

Orthogonality relation: )'(' pppp    

Completeness relation:  



1̂ppdp  

Wavefunction:  Note that one can write that quantum state of a particle as, 

xxdxxxdx  
















1̂  

The amplitude x  is usually denoted by )(x  and is called the wavefunction of the particle.  

xx)(dx 
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Similarly, 





ppp )(d   

 
Question: What is xp ? We cannot answer this unless we know something more about the properties 

of the operators x̂  and p̂ . The classical description of a particle is “quantized” by imposing (as a 
postulate) a commutation relation. For a non-relativistic, spin-less, particle this commutation relation is 
  ipx ˆ,ˆ  i.e. ixppx  ˆˆˆˆ . One can obtain the value of the inner product xp  from this 

commutation relation, as shown below.  

 
  xpixpxp

ipx









ˆ,ˆ

ˆ,ˆ
 

xpxpxpxpi

xpixpxpxpxp

ˆˆ)(

ˆˆ








 

  xppppxpxpxpxpxpi ˆ'''dˆˆ1̂ˆ)(    

 
xppxxpxpxpxpxpi

xppxxxXpppxpxpi

xpppxppxpxpi

'''''''d'd)(

'''''dˆ''d)(

'''ˆ'd)(













 

The solution of the above integral equation can be found and it is, 

 




2

xp
i

e
xp



  

This is quite interesting; if xxx )(d   and  ppx )(d  , then it follows that, 

     p
e

dpppxdpxx

px
i









2
 

Similarly,  

 













2
)(d)(

xp
i

e
xxp   

It follows from the commutation relation that the coefficients of momentum and position basis expansion 
have a Fourier transform relationship!!  
 
It is also useful to know the action of the operators x̂  and p̂  on a state vector   (i.e. what are the 

states p̂  and x̂ ). We already know that )(xx   . We need to find xx ˆ  and px ˆ . 

 
1) :ˆ xx  

 
     

)(

ˆˆˆ ***

xxxx

xxxxxxxx
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2) px ˆ : 

A little more complicated,   

x

x

i

p
e

p
xi

p
e

ppppxpp

ppppxpxpx

px
i
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i





































)(

)(
2

d

)(
2

dd

dˆ1̂ˆˆ

























 

Therefore, p̂  acts like a differential operator in the position representation! 
 
3) xp ˆ : 

Proceed as before, 

 

)()(
2

d

)(dxdxˆ1̂ˆˆ

p
pi

xx
e

x

xxxpxxxpxpxp

px
i











 






 

x̂  acts like a differential operator in the momentum representation. 
 
4) :ˆ pp  

 
     

)(

ˆˆˆ ***

pppp

pppppppp








 

 
Standard Deviation of Observables 

We saw earlier the expectation value, or the mean value, of an operator Â  is  Â . We will write 

this mean value as Â . What about the standard deviation? Define a new operator Â  as, 

 
AAAAA

AAA

ˆˆ2ˆˆˆ

ˆˆˆ

222 


 

and,   
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222

22

222

ˆˆˆ

ˆˆ

ˆˆ2ˆˆˆ

AAA

AA

AAAAA











 

 

Heisenberg Uncertainty Relations 
Suppose we have two operators Â  and B̂ . The Heisenberg Uncertainty Principle states that if 

  CiBA ˆ,ˆ  (where C is some real number) then for all possible states   the following relation holds,  

 
4

ˆˆ
2

22 C
BA   

Proof: For some real number  , consider the state   where   BiA ˆˆ  . Now we know 

that 0 , therefore, 

    0ˆˆˆˆ    BiABiA  

Suppose Â  and B̂  are Hermitian, then, 

   0ˆ,ˆˆˆ 222   BAiBA  

But since     iCBABA  ˆ,ˆˆ,ˆ , 

 
0ˆˆ

0ˆˆ

222

222





CBA

CBA




 

The above must hold for all values of   and this can only happen if, 

 

4
ˆÂ

0ˆˆ4

2
22

222

C
B

BAC




 

Example: We know that   ipx ˆ,ˆ , therefore, 

 
4

ˆˆ
2

22 
 px  

This should not be a surprise since we already know that the position and momentum representations of a 
quantum state are related by, 

 



)(

2
d)( p
e

px

xp
i








 

and this Fourier transform relationship implies that 
4

ˆˆ
2

22 
 px  
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The Hamiltonian Operator 
The energy of a particle of mass m  and momentum p  in a potential )(xV  is given classically as, 

  xV
m

p
H 

2

2
 

In quantum mechanics, the energy is given by the Hamiltonian operator Ĥ . For a free particle, 

 )ˆ(
2

ˆˆ
2

xV
m

p
H   

 

1.1.4 Postulate 6 and Time Development in Quantum Mechanics 
The time evolution of a quantum state )(t  is given by the Schrodinger equation (sixth postulate): 

 )(ˆ)( tHt
t

i  



  

This is a first order linear differential equation. Therefore, if )0( t  is known, then using this as the 

boundary condition )(t  can be determined for all 0t . The formal solution of the above equation, 

for a time independent Hamiltonian, is, 

 )0()(
ˆ




tet
tH

i

   

 

Stationary States 
The eigenvectors of the energy operator Ĥ  are called stationary states since they don’t evolve in time 
other than acquiring a time dependent phase factor.  
 

Example: Suppose Ĥ  has eigenvectors ke  with eigenvalues k  (i.e. kkk eeH ˆ ). Since Ĥ  is 

Hermitian, its eigenvectors form a complete set (i.e 1̂ k
k

k ee ) and any arbitrary quantum state can 

be expanded in terms of ke . Suppose 
k

kk ect )0( . Assume,  
k

kk etct )( , and plug 

in the Schrodinger equation,  

 )(ˆ)( tHt
t

i  



  

 
     




k
kkk

k
kk

k
k

k etceHtce
t

tc
i ˆ  

Multiply by bra je  on both sides to get, 

 )(
)(

tc
t

tc
i jj

i 



  

Solution is,  

   

t
i

j

t
i

jj

jj

ecetctc




 0)(  
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 k
k

ti

kk
k

k eecetct
k







 )()(  

This implies 
22

)0()(  tete jj   for all times. The probability of being in particular energy 

eigenstate does not change with time. That is why energy eigenstates are called stationary states. 
 
Matrix Representation of Operators 
Suppose vectors k  form a complete set ( i.e. 1̂

k
kk  ). Any operator can be written as. 

 



 



kj
jkjk

k j
jjkk

A

A

AA





ˆ

ˆ

1̂ˆ1̂ˆ

 

Let, jkkj AA  ˆ . Then, 

 jk
kj

kjAA ˆ  

We can represent Â  in matrix form by choosing a mapping between basis vectors k  and column 

vectors. For example, let, 
 

 .....
1

0

0

0

1

0

0

0

1

321































































  

The operator Â  is then a matrix, 

 



















2221

1211 ....
ˆ AA

AA

A  

If the basis set chosen consists of eigenvectors of Â  then jjkjjkkj AAA   ˆ  and in this basis set 

the operator Â  is represented by a diagonal matrix,   

 

























0

0

00

ˆ 22

11

A

A

A  

 
Hamiltonian Operator in a Different Form 
We know that for a particle in a potential, 

 )ˆ(
2

ˆˆ
2

xV
m

p
H   

Suppose Ĥ  has eigenvectors ke  with eigenvalues k  (i.e. kkk eeH ˆ ). Using these energy 

eigenvectors, we can write Ĥ  in a different form, 
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ˆ

ˆ

1̂ˆ1̂ˆ

 

Now suppose we have a Hamiltonian oĤ ,  

 )ˆ(
2

ˆˆ
2

xV
m

p
Ho   

and we found the eigenvectors ke  and eigenvalues k  (i e. kkko eeH ˆ ). Now suppose an 

additional potential  xU ˆ  is added to oĤ  so that the full Hamiltonian is now Ĥ , where, 

  
  jkkj

k
j

k j
kkjkkk

j
j

jo
k

kk

o

o

exUeUeeUeeH

eexUHee

xUHHH

xUxV
m

p
xUHH

ˆˆ

)ˆ(ˆ

1̂))ˆ(ˆ(1̂1̂ˆ1̂ˆ

)ˆ()ˆ(
2

ˆ
)ˆ(ˆˆ

2

  

















 

The first part is `diagonal’ in the basis used. The second part is not diagonal.  
 
 

1.2 Dynamics of a Two-Level System 
 

Suppose oĤ  has only two important eigenvectors; 1e  and 2e  which are degenerate, i.e., 

  2211
ˆ eeeeHo    

Suppose a small potential is added to the Hamiltonian, 

 












0

)ˆ(ˆˆ

2211

2112
12212211 UU

UUU
eeUeeUeeee

xUHH o


 

Physical Realization: A coupled quantum well system, shown below, is a two-level system. oĤ  

corresponds to the Hamiltonian when the two potential wells were very far apart, and Ĥ  corresponds to 
the potential when the two wells are close. If d  is small, the quantum states 1e  and 2e  get `coupled’ 

via tunneling through the barrier. This tunneling is described by the additional potential )ˆ(xU .  
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Suppose at time 0t  the particle is placed in well #1 so that 1)0( et  . We need to find the 

particle wavefunction for 0t .  
 
Solution by Expansion in the Original Eigenstates: Assume the following solution for 0t ,  

 2211 )()()( etcetct    

with the boundary condition 1)0(1 tc  and 0)0(2 tc ) and plug into the Schrodinger equation to 
get,  

    22112211 )()(ˆ)()( etcetcHetcetc
t

i 



  

Multiply by the bras 1e  and then 2e  to get two equations, 

 

)()()(

)()()(
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tcUtctc
t

i

tcUtctc
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The matrix form of the above two equations is, 
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Solution, subject to the initial conditions, is,  
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and, 

 

.sin)()(
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The quantum state oscillates in time between 1e  and 2e .  

 
Solution by Expansion in the Exact Eigenstates: Start from, 

d
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We can diagonalize the new Hamiltonian. In matrix representation, where 









0

1
1e  and 










1

0
2e , Ĥ  

is,  

 














U

U
Ĥ  

Eigenvalues of Ĥ  are U  and U  and the corresponding eigenvectors are 







1

1

2

1
 and 








1

1

2

1
, 

respectively, which correspond to states,  21
2

1
ee   and  21

2

1
ee  , respectively. Let these 

states be 1v  and 2v , respectively. We can work out temporal dynamics using 1v , 2v  which are 

the eigenvectors of the full Hamiltonian. The initial state is, 

  211
2

1
)0( vvet   

Since 1v  and 2v  are the energy eigenstates, they are stationary states. So using the earlier result, the 

state at a later time is,  
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It follows that,  
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But now if we evaluate 
2

1 )(te   we get, 

   









Ut
tvvte 2

2

21
2

1 cos)(
2

1
)(  . 

and similarly, 

 








Ut
te 22

2 sin)(  

which are the same results obtained earlier via a different method. 
 

 
1.3 Fermi’s Golden Rule  
 
Now consider the problem of one level coupled with infinitely many levels, as shown below.  
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The Hamiltonian can be written as, 
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The levels 1  to   are described by a density of levels (or density of states) )(ED  that has units equal 
to the number of levels per unit energy interval, and can be written as,  

   


1
)(

k
kEED   

One cannot diagonalize this giant Hamiltonian. Suppose 0)0( et  , then one may ask the question: 

what is the escape time of the particle from the well? As before, let the solution be of the form, 

 


1
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And plug this solution in the Schrodinger equation to get the following equations, 
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The initial conditions are,  
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This gives us, 
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Use this expression in the equation for )(0 tb  to get, 
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Since )(0 tb is expected to change in time slowly compared to the exponential term, we can pull it out of 
the integral to get,  

 )(
1)(

0
0

)(
)(2

12
0

0

tbetdU
t

tb t tti

k
k

k













 


















 

This gives, 
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The above equations shows that the probability of finding the particle at any later time to be in the initial 
state decays as, 
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2
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where the decay rate  is,  

  


1
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2
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If we replace the summation 


1k
 by the integral   EdE D , and 2

kU  by  2
EU , then we 

get, 
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0
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0
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DU
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The above relation is called Fermi’s Golden Rule.  
 
Conclusion: When the number of possible final states is infinite, there are no oscillations. There is just a 
decay of the initial state into the final states and the decay rate is given by the Fermi’s Golden Rule. 
 
 

1.4 Heisenberg and Schrodinger Pictures in Quantum Mechanics 
 
1.4.1 The Schrodinger Picture 
In quantum mechanics, one is usually interested in calculating expectation values of operators, e.g. 

quantities like )(ˆ)( tAt  . The calculation proceeds as follows: 

 
i) Given the initial state )0( t , calculate )(t  for 0t  using the Schrodinger equation, 

 )(ˆ)( tHt
t

i  
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The formal solution is )0()(

ˆ




tet

tH
i

  . The operator exponential is to be interpreted as its 

Taylor series expansion, i.e.,  

 


 


2
2

2
ˆ

2

ˆ
ˆ1 t

H
tH

i
e

t
H
i

 

ii) Once )(t  is known, calculate )(ˆ)( tAt  .  

 
This method, which we have been using so far, is called the Schrodinger’s picture. In the Schrodinger 
picture, the state vectors are time dependent and the operators are time independent.   
 
1.4.2 The Heisenberg Picture 
There is another equivalent way to calculate expectation values of operators. First note that, 

 )0(ˆ)0()(ˆ)(

ˆˆ




teAettAt
t

Hi
t

H
i

   

If one defines a time-dependent operator )(ˆ tA  as, 

 
t

H
it

H
i

eAetA 

ˆˆ

ˆ)(ˆ


  

then )(ˆ)( tAt   becomes )0()(ˆ)0(  ttAt  . In this new form, the quantum state does not 

change with time but the operator evolves in time. This is called the Heisenberg picture. In the 
Heisenberg picture the operators are time dependent, 

 
t

H
it

H
i

eAetA 

ˆˆ

ˆ)(ˆ


  
One can differentiate both sides with respect to time to get, 

  HtA
dt

tAd
i ˆ),(ˆ

)(ˆ
  

The above equation is called the Heisenberg equation. The calculation procedure in the Heisenberg 
picture is as follows: 
 

i) Given an initial state )0( t  and an operator Â , calculate )(ˆ tA  using the Heisenberg equation, 

  HtA
dt

tAd
i ˆ),(ˆ

)(ˆ
   

with AtA ˆ)0(ˆ   as the boundary condition.  

ii) Once )(ˆ tA  is known, the mean value of Â  at time t  is obtained as follows, 

 )(ˆ)0()(ˆ)0()(ˆ)( tAttAttAt    

In the Heisenberg picture, the operators are time dependent and the state vectors are time independent 
(one just uses the initial state for calculations). Note that: 

(a) HeHetH
t

H
it

H
i

ˆˆ)(ˆ
ˆˆ




 , the Hamiltonian operator is time-independent. 

(b) If   CBA ˆˆ,ˆ   then the equal time commutation relation at a later time is, 
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     )(ˆˆˆˆˆˆ)(ˆ),(ˆ
ˆˆˆˆ

tCeCeeABBAetBtA
t

H
it

H
it

H
it

H
i




  
The form of the equal-time commutation relations do not change with time. The equal-time commutation 
relations represent fundamental properties of physical systems and their form are time independent.  
 
A Two-Level System in the Heisenberg Picture 
The two-level system discussed earlier is described by the Hamiltonian, 

 12212211
ˆ eeUeeUeeeeH    

Suppose, 1)0( et  . We need to find 
2

1 )(te   and 
2

2 )(te   using the Heisenberg picture. 

We define the following number operators, 

 222111
ˆˆ eeNeeN   

Then the desired quantities can be written as, 

 
.)0()(ˆ)0()(

)0()(ˆ)0()(ˆ)()(

2
2

2

11
2

1





ttNtte

ttNttNtte




 

So we need to find )(ˆ
1 tN  and )(ˆ

2 tN . We also define operators ̂  and ̂  as, 

  
   ˆˆˆˆ 1221 eeee  

Ĥ  is then, 

       ˆˆˆˆˆ
21 UNNH  

You can verify that the following commutation relations hold, 
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Using the Heisenberg equation we get, 

 

     

     
dt

td
itNtNUHt
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td
i
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ittUHtN
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)(ˆ
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1
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Note that, 

   212121
ˆˆ)(ˆ)(ˆ0)(ˆ)(ˆ NNtNtNtNtN

dt

d
  

Define, )(ˆ)(ˆ)(ˆ
12 tNtNtNd  . The equation for )(ˆ tNd  is, 

 )(ˆ4)(ˆ

2

22
tN

U

dt

tNd
d

d


  

The above equation can be solved with the two boundary conditions, 

  


  ˆˆ
2)(ˆ

ˆˆˆ)0(ˆ

0
12



iU

dt

tNd
NNNtN

t

d
dd  

Solution is, 

   












  t

U
it

U
NtN dd



2
sinˆˆ

2
cosˆ)(ˆ   
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It follows that, 
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sinˆˆ

2
sinˆcosˆ
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2
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and  

   




















 


UtiUt
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Ut
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2
sinˆˆ

2
cosˆsinˆ)(ˆ 2

2
2

12   

The above two operator expressions for )(ˆ
1 tN  and )(ˆ

2 tN  might look strange. The answer for the 

Heisenberg operators )(ˆ
1 tN  and )(ˆ

2 tN  has been expressed in terms of the Schrodinger operators 1N̂ , 2N̂

, ̂ , and ̂ , and we already know the action of these Schrodinger operators on the quantum states. We 
can now obtain, 

 

.cos                  

)(ˆ                  

)0()(ˆ)0()(

2

11

1
2

1















Ut

etNe

ttNtte 

 

and, 

 .sin)(ˆ)( 2
121

2
2 






 t
U

etNete


  

These results are the same as found earlier using the Schrodinger equation.  
 
 

1.5 Quantum Mechanical Measurements 
 
1.5.1 Commutation Relations in Quantum Mechanics and Physical Measurements 
In quantum mechanics, commutation relations have an intimate connection with physical measurements 
and this connection will be explored in the following Sections.  
 
Commutation Relations and Common Eigenvectors 
We know from linear algebra that if two matrices commute then they can both have the same set of 

eigenvectors. In quantum mechanics, if two operators Â  and B̂  commute (i.e   0ˆ,ˆ BA ) then they also 
can have the same set of eigenvectors. 
 

Outline of the Proof: Suppose Â  has eigenvector kv  with eigenvalues k  i.e kkk vvA ˆ . Since 

  0ˆ,ˆ BA ,  

 

   kkk

kkk

k

vBvBA

vBvBA

vABBA

ABBA

ˆˆˆ

0ˆˆˆ

0ˆˆˆˆ

0ˆˆˆˆ
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kvB̂  is also an eigenvector of Â  with eigenvalue k . If Â  has all distinct eigenvalues then kvB̂  

must be proportional to kv  (i.e kk vvB ˆ ) and this means that kv  is also an eigenvector of B̂ . If 

Â  has many eigenvectors with the same eigenvalue k  then kvB̂  must at least lie in this 

eigensubspace of Â  even if kvB̂  is not proportional to kv . In this case, the vectors in this 

eigensubspace of Â  can be chosen such that they are also eigenvectors of B̂  (a proof of this can be found 
in any text on linear algebra).  
 
Commutation Relations and Simultaneous Measurements 
Consider two operators Â  and B̂  that have eigenvectors and (all distinct) eigenvalues given by, 
 

 kkkkkk uuBvvA   ˆˆ  

1) Supppose the observableA  is measured for a state  . The a-priori probability of obtaining the result 

k  is 
2

kv . Suppose j  was obtained. Immediately after the measurement the quantum state   

collapses to jv . All subsequent measurements of A  (done fast enough so that no evolution described 

by the Schrodinger equation takes place during this time) will yield the result j . 

 
2) Now suppose the observableA  is measured for a state  . Suppose j  was obtained and 

immediately after this measurement the quantum state   collapsed to jv . Now suppose the 

observableB  is measured. The a-priori probability of obtaining k  is 
2

jk vu . Suppose j  was 

obtained. Immediately after the measurement the quantum state jv  collapses to ju . If now A  is 

again measured, the probability of obtaining k  is 
2

jk uv . The measurement of B  `disturbed’ the 

quantum state so that the second measurement of A  gave a different result than the first. We say that A  
and B  are not simultaneously measurable. Measurement of one quantity disturbs the value of the other 
quantity. 
 

3) Suppose   0ˆ,ˆ BA . Then Â  and B̂  have the same set of eigenvectors, say k . In other words, 

 kkkA  ˆ  

 kkkB  ˆ  

Now suppose the following sequence of events: A  is measured   result j  is obtained B  is 

measured   result j  obtained. But now all subsequent measurements of A  and/or B  will give the 

results j  and j , respectively. We say that if Â  and B̂  commute they are simultaneously measurable 

(i.e. measurement of one quantity does not disturb the value of the other quantity). Of course, it has been 
implicitly assumed that all measurements are done in a time period short enough that no time evolution of 
the quantum state occurs. 
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1.5.2 Quantum Mechanical Decoherence 
Decoherence is one of the least understood as well as the most misunderstood concept in quantum 
mechanics. A simple picture of decoherence is presented here. Consider the superposition state 

2211 vcvc   of a particle. A measurement is made to determine whether the particle is in 1v  

or 2v . If the result is 1v  and the state immediately after the measurement is 1v  (i.e. 1v ). If 

the result is 2v  then just after the measurement, 2v . In either case, the action of measurement 

destroys the linear superposition state given by 2211 vcvc   and replaces it by either 1v  or 2v  

depending upon the measurement outcome. In other words, the acquisition of information (by intelligent 
beings) can destroy quantum mechanical linear superpositions. An intelligent being does not need to 
make a direct measurement. He/she can perhaps use, say a photon or phonon, and scatter it off the particle 
to determine whether the particle is in 1v  state or in 2v  state. Any such procedure that gives the 

intelligent being information about whether the particle is in 1v  or 2v  destroys the linear 

superposition and collapses the quantum state of the particle into either 1v  or 2v .  

 
Now suppose the test particle is interacting with its environment. If there is a way by which an intelligent 
being can determine whether the particle is in 1v  or 2v  by just observing the environment then the 

linear superposition state of the particle will still get destroyed. Linear superpositions can therefore be 
short lived and can easily get destroyed by interaction with the environment (even if no intelligent being 
is actively making a measurement). 
 
A question to ask here is if there a way to quantify this destruction of quantum mechanical linear 

superpositions. For the state 2211 vcvc  , consider the products 21cc
  and 12cc

 . These 

products are indicative of the linear superposition in the state  . If these products are zero then a linear 

superposition does not exist. The operators 21ˆ vv  and 12ˆ vv  generate these products 

given a state  , 

 1221 ˆˆ cccc 



    

The interaction of a particle with its environment can make these products go to zero as time progresses, 
i.e., 

 0)()()(ˆ)( 21   


ttctctt   

and, 

 0)()()(ˆ)( 12   


ttctctt   

This phenomenon which results in the destruction of quantum mechanical superpositions is called 
quantum mechanical decoherence.  
 
A Paradox: We started from a state 2211 vcvc   and reached the conclusion that as time 

progresses,   will either collapse into 1v  or 2v  by interaction with the environment (i.e. the linear 

superposition will get destroyed). Suppose a new basis set is introduced, 

    2121
2

1

2

1
vvvvvv    



Quantum Optics for Photonics and Optoelectronics (Farhan Rana, Cornell University) 
 

 21

Then starting from 2211 vcvc   one ends up in 1v  or 2v  which one can also write as, 

   vv
2

1
 and    vv

2

1
, respectively. We said linear superpositions get destroyed by 

interaction with the environment. Then now come we end up in linear superposition states after 
interaction with the environment? Of course, any state can be written as a linear superposition state by 
choosing an appropriate basis set. Whether or not linear superpositions in a particular basis representation 
get destroyed depends on the nature of the interaction between the particle and the environment and 
exactly what information is extracted by the environment during the interaction. Suppose the interaction 
of the particle, initially in state 2211 vcvc  , is such that an intelligent observer by looking 

later at the environment can figure out whether the particle was in v  or v . We can write   as, 

 
   







 v
cc

v
cc

vcvc
22

2121
2211  

As time progresses the linear superposition between v  and v  will get destroyed and the particle 

state will end up in v  or v , which are  21
2

1
vv   and  21

2

1
vv  , respectively.  

 
 

1.6 The Quantum Mechanical Density Operator 
 
1.6.1 Pure States and Statistical Mixtures 
Consider two sets of quantum states: 
Set A: A large number of identical copies of the linear superposition state, 2211 vcvc   

Set B: A large number of states 1v  and 2v . The numbers of 1v  states and 2v  states are in the 

ratio 
2

2
2

1 : cc .  

Set A consists of pure states  . Set B is a statistical mixture of states 1v  and 2v . Suppose the states 

21 , vv  are eigenstates of an operator Ô  with corresponding eigenvalues 1  and 2 , respectively. If 

the mean value of Ô  is measured for sets A and B, the same result 




  2

22
2

11 cc   will be obtained 

for both sets. Is there a way to handle the distinction between pure states (set A) and a statistical mixture 
(set B)? The answer is yes, and the density operator is the tool designed to handle pure states and 
statistical mixtures on equal footing.  
 
1.6.2 The Density Operator and the Density Matrix in Quantum Mechanics 
Density operators are a useful way to represent quantum states. Density operators can also describe 
dynamics of quantum states (including decoherence) in a simple way. Density operators can also 
represent statistical mixtures in addition to pure quantum states. Most generally, a quantum state is not 
represented by a state vector  , but by a density operator ̂ .  

 
For a pure state   the density operator ̂  is  . If 2211 vcvc  , as in the case of set A 

above, ̂  is, 

 2112122122
2

211
2

1ˆ vvccvvccvvcvvc    
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The density operator, like all quantum mechanical operators, can be put in a matrix form. In matrix 

representation, using the basis 1v  and 2v  (i.e.  1
01 v  and  0

12 v ), the density operator is,  

 



















2
221

12
2

1ˆ
ccc

ccc
     (1) 

The diagonal elements of ̂  indicate the occupation probabilities, and the off-diagonal elements represent 
coherences. For a statistical mixture, as in the case of set B above, the density operator is, 

 22
2

211
2

1ˆ vvcvvc   

In matrix form, 

 















2
2

2
1

0

0
ˆ

c

c
     (2) 

Comparing (2) to (1), we see that the off-diagonal elements of the density matrix are absent for a 
statistical mixture. We also know that decoherence can destroy linear superposition and reduce a large 
collection of states of the form 2211 vcvc   to a statistical mixture that has states 1v  and 2v  with 

probabities 
2

1c  and 
2

2c . Thus we expect,   

 







 




















2

1eDecoherenc
2

221

12
2

1

0

0
ˆˆ

p

p

ccc

ccc
  

Decoherence can destroy off diagonal elements of the density operator (or the density matrix).  
 
Mean Values of Operators Using the Density Operator/Matrix: The mean value of an observable A  

with respect to the state   was  AA ˆˆ  . The mean value of A  with respect to the density 

operator ̂  is defined as, 

  AA ˆˆˆ Trace  

Suppose,  ˆ  where 2211 vcvc  , and 1v  and 2v  form a complete basis. Then, 
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On the other hand if ̂  represents a statistical mixture of 1v  and 2v  with probabilities 
2

1c  and 
2

2c  

then, 
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A More Complicated Example: Suppose we have a statistical mixture of states  21
2

1
vvv   

and  21
2

1
vvv   with probabilities p  and p , respectively. In this case we have a statistical 

mixture of linear superposition states. Then, 
 
  1ˆ   ppvvpvvp  

We can write the above expression as, 
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12212211
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1
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vvvvvvvv
p

















 

Note that the density matrix was diagonal in the  vv ,  basis but has off-diagonal elements in the 

21 , vv  basis. The average value of the observable A  is then, 
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2
ˆ

2

ˆ
2

1ˆ
2

1ˆˆˆ

2112
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vAv
pp

vAv
pp
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 Trace
 

The above examples show that density operators/matrices can handle the most general types of situations. 
 
1.6.3 Time Development of Density Operators 
In the case of pure states, the average value of a quantity A  at time “t” was shown to be, 

 
     

      dependent)  timeisoperator  (the PictureHeisenberg

dependent)  timeis state (the PicturerSchrodinge





0ˆ0
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ttAt

tAttA




 

There are also two ways to calculate averages when quantum states are described by density operators, 
 

         
      dependent)  timeisoperator  (the PictureHeisenbergTrace

dependent)  timeis state (the PicturerSchrodingeTraceTrace
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To see their equivalence, recall that, 

  
t

H
it

H
i

eAetA 

ˆˆ
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So, 

       















 t
H
it

H
i

eAettAt 

ˆˆ

ˆ0ˆˆ0ˆ  TraceTrace  

Use the result,    ABBA ˆˆˆˆ TraceTrace  , to get, 
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where,  

    
t

Hi
t

Hi

etet 

ˆˆ

0ˆˆ 


  
After differentiating the above equation with respect to time we obtain the Schrodinger equation (not the 
Heisenberg equation) for the density operator,  

 
    tH
t

t
i 

ˆ,ˆˆ





  

Note that the above equation is a little different from the Heisenberg equation for any other operator, 

 
    HtA
t

tA
i ˆ,ˆ

ˆ
 




  

An advantage of the Heisenberg picture is that we can calculate correlation functions of observables, such 
as,  

       21
ˆˆ0ˆ tBtAt Trace  

It is difficult to compute these quantities in the Schrodinger picture. In the Schrodinger picture, we can 
only easily compute equal time averages, e.g., 

          BAttBtAt ˆˆˆˆ0ˆ 111  TraceTrace   
 
Two-level System via the Density Operator Formalism in the Schrodinger Picture 
Consider the two-level system described by the Hamiltonian,  

    .ˆ
21122211 eeeeUeeeeH   

Suppose,   10 et  . The density operator is then, 

       11000ˆ eettt    

In the matrix form, with  1
01 e  and  0

12 e as the basis, we get, 

   









00

01
0ˆ t  

Our goal is to find,  

           teetteette 111111
2

1 ˆ   Trace  

Start from, 

 
           

   
















tt

tt
tHttH
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t
i

2221

1211ˆˆˆˆˆˆ





  

Take the matrix element of the above equation with 1e  and 1e  to get, 

       ttUt
dt

d
i 211211    

Take the matrix element with 2e  and 1e  to get, 
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       ttUt
t

i 112221d

d    

Similarly, 
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Note that, 
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The above equation described the conservation of probability during time evolution. Let, 
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Then, 
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Combining the above two equation gives, 
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The boundary conditions are, 
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The solution is, 
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So, 
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 rT  

This is the same result as obtained earlier by different methods.  
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Decoherence in the Density Operator Formalism 
We first discuss the effects of decoherence. Averages computed via the density operator should be 

interpreted is an average sense, i.e. the average     AttA ˆˆˆ Trace  could mean either one of the 

following: 
a) Several identical copies of a system are prepared at 0t  and the state of each system is 

represented by the density operator  0ˆ t . At time t  measurement of a quantity A  is 
made on all copies of the system. The average of the results obtained corresponds to the 

quantity   At ˆ̂Trace .  
b) A single system is prepared at 0t  and the state of the system is represented by the density 

operator  0ˆ t . At time t  measurement of a quantity A  is made. The system is then put 

(by some means) in the same state  0ˆ t , and the process is repeated many times. The 

average of all the measurements corresponds to the quantity   At ˆ̂Trace . 
 
We are now in a position to understand how decoherence will effect our results. Suppose we have N  
different copies of a two-level system, and all copies are prepared in the state 1e  at time 0t . So, 

assuming interpretation (a), the density operator of each system is, 
   110ˆ eet   

At later time t  (assuming no decoherence), 
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At time t consider the state of the j -th system,  
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Suppose the j -th system at 1tt   collapsed into 1e  as a result of decoherence. For 1tt  ,  
j

t  

becomes, 
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where, 


1Ut
j  . Now suppose at 2tt   the k -th system collapsed into 2ei . For 2tt  ,  
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where 


2Ut
k  . As time progresses more and more systems will decohere and collapse into either  

2ei  or 1e . Since the times when the states of different systems collapse are random, the phases  
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will also be random. Therefore, in what follows, one can absorb the 
2


 phase terms in it. The process of 

decoherence usually has an associated time scale, which we will call 1 . For 1t , most systems 

will not have experienced a state collapse. For 1t , most systems would have experienced a state 
collapse. At time t , the ensemble average of any observable quantity A  (averaged over the entire 
system) will be,  
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If 1t , p  for every system will be non-zero and will have a random value. For N  large, one can 

replace the sum over p  by averaging with respect to   assuming that  is a random variable uniformly 
distributed in the interval from  20  , and the above expression becomes,  
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The above result is equivalent to the density matrix  t̂  for 1t  given by, 
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A description of decoherence must therefore give the same results as obtained above. This can be done by 
modifying the equations for the off-diagonal components of the density matrix and introducing a decay 
term,  

 
        

        tt
U
itt

dt

d

tt
U
itt

dt

d

11222121

11221212











  

Now we get for, 
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Using the same boundary conditions as before we get the result, 
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Therefore,   
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This is just what was desired. Thus, introduction of coherence decay terms (i.e.  ) works as expected. 

Note that we arbitrarily inserted these coherence decay terms in the equations for  t12  and  t21 . 

Question arises if there is a better description, or a better equation, for the density operator of the form,  

   ??ˆ
d

d
t

t
i   

whose matrix elements contain the decoherence  terms for the off-diagonal components. It terms out there 
is such an equation, but it is complicated. It is much easier to do this is the Heisenberg picture using 
Langevin equations. We shall do this later in the course. 
 
Two-level System via the Density Operator Formalism in the Heisenberg Picture 
In the Heisenberg picture, 

       tAttA ˆ0ˆˆ  Tr  

where,  
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We have as before, 
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the average of equations (1)-(4) with respect to    0ˆ tTrace  gives the equations we obtained 

earlier for        tttt 21122211 ,,,   and  working in the Schrodinger picture. The solution of (1)-(4) is, 

 

   

         
 

  .sinˆ

cosˆ

ˆˆ0ˆˆ

2
sinˆˆ

2

1
sinˆcosˆˆ

2
2

2
111

11111

2
2

2
11







































 







Ut
tN

Ut
etNe

tNeetNttN

Ut
i

Ut
N

Ut
NtN

TraceTrace 



 

Now we want to introduce decoherence. We can try changing the equations for  t̂  and  t̂  as 
follows, 
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The motivation for adding these decay terms is that we know that, 
            ttttt 12ˆˆˆ0ˆ    TraceTrace  
and,  
       ttt 21ˆ0ˆ   Trace  

Since we have already seen that the equations for  t12  and  t21  and know they have the decay 

terms, the modified equations for  t̂  and  t̂  ensure that we get the right equations for  t12  and 

 t21 . The solution of (1) (2) (5) (6) with initial conditions,  
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which is the same result as before.  
 
A Big Problem: We had said earlier that time evolution in the Heisenberg picture preserves the 
commutation relations between operators.  

Proof:  If   CBA ˆˆ,ˆ   then,   
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Commutation relations are fundamental ingredients of the quantum mechanical description of any system 
and can never be violated. But if one adds extra terms to the right hand side of the Heisenberg equation, 
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then there is no guarantee that the commutation of  tÂ  with other operators will be preserved during 

time evolution. For example, to model decoherence we changed the equation for  t̂  given by, 
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The original equation preserved the commutation relations, such as, 
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The modified equation does not preserve such commutations In modeling decoherence, we changed the 
equations in a way that spoiled the quantum mechanical consistency of the equations. We did not detect 
this problem in the Schrodinger picture since we took averages of the density operator equation, 
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and introduced decoherence into not the operator equations but the equations for complex numbers (e.g. 
 t21  and  t12 ). Later in the course, we will see that decoherence introduces noise into the system 

that is in some sense fundamental. This noise will be studied with Heisenberg-Langevin equations. 
 
 

1.7 Product Hilbert Spaces 
 
The Hilbert space of two independent quantum systems is obtained by “sticking” together the Hilbert 
spaces of the individual systems. For example, consider two systems, system “a” and system “b”, with 
quantum states 

a
  and 

b
x , respectively. The state   of the combined system is written as, 

 
ba

x    

An operator in this enlarged Hilbert space is written as a tensor product, BA ˆˆ  , where the operator Â  (or 

B̂ ) acts only in the Hilbert space of system “a” (or system “b”) as follows, 
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Example: Two Different Two-Level Systems: 
 

 
The Hamiltonian for two different two-level systems is,  
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which, with a slight abuse of notation, is more commonly written as, 
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An eigenstate of the combined system is, for example, 
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And the action of the Hamiltonian on the eigenstate is, 
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Note that each operator in the tensor product acts on the state belonging to its own Hilbert space.  
 
Example: Two Different Radiation Modes in a Cavity  
The Hamiltonian for two different modes (“1” and “2”) of radiation in a cavity is, 

 222111212121 ˆˆˆˆˆˆˆ1̂1̂ˆˆ aaaaHHHHH      
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Eigenstates of the above Hamiltonian are of the form,  
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1.8 Entangled States 
 
1.8.1 Introduction 
States belonging to a combined Hilbert space of two systems, “a” and “b”, are of two types: 

1) Unentangled states 
2) Entangled states 

States of the type 
ba

x  that can be written as, 
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are unentangled states. Examples of unentangled states for two different two-level systems are, 
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For entangled states, this “separation” is not possible. For example, consider the entangled state, 
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The state above cannot be written in the form, 
ba

x .  

 
1.8.2 Entangled States and Quantum Measurements 
Entangled states have some interesting consequences when it comes to measurements. First, consider the 
complicated un-entangled state of two different two-level systems, 
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Suppose we measure the energy of system “b”. Possible outcomes and the corresponding probabilities 
are, 
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Suppose we measure the energy of system “a”. Possible outcomes and the corresponding probabilities are, 
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Now suppose we made an energy measurement on system “a” and obtained the result 1 . Right after this 
measurement the state of the full system is, 

  









bba
eee 211

2

1
. 

If after the measurement on system “a”, we make a measurement on system “b”, the possible outcomes 
and the corresponding associated probabilities are, 
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Therefore, measurement on system “a” has not changed the measurement results (i.e possible outcomes 
and the corresponding probabilities) for system “b”. Now consider the entangled state, 
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For energy measurement on system “a”, possible outcomes and the corresponding probabilities are, 
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For energy measurement on system “b”, we have, 
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Suppose we made an energy measurement on system “a” and obtained the result 1 . Right after this 
measurement the state of the combined system collapses into the state, 
 

ba
ee 21   

If after the measurement on system “a”, we make an energy measurement on system “b”, the only 
possible outcome is 2  with probability one. Therefore, for entangled states measurement on one 
subsystem, changes the measurement results (i.e possible outcomes and the corresponding probabilities) 
for the other subsystem. 
 
 

1.9 Density Operators for Joint Hilbert Spaces 
 
1.9.1 Density Operators for Entangled and Unentangled States 
If the quantum state of a system consisting of two subsystems “a” and “b” is an unentangled state like, 
 

ba
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then the density operator ̂  for the system  is, 
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Where, 
aaa ˆ  and xx

bbb ̂ . Therefore, the density operator can be written as a tensor 

product of the density operators of the subsystems. Another example is, 
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where, 
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Now consider the entangled state, 
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The density operator ̂  for entangled states cannot be written as a tensor product, ba  ˆˆ  .  
 
Recall that  Trace  operation means trace with respect to all the states of the full Hilbert space that form 
a complete set. As an example, consider two different two-level systems “a” and “b”. The full Hilbert 
space consists of the following four states which form a complete set, 
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The average energy is calculated as, 

   kHkH
k

ˆˆˆˆ
4

1
 


Trace  

Suppose, 
ba

ee 21  . Then, 

 2211ˆ eeee
bbaa

   

and, 



Quantum Optics for Photonics and Optoelectronics (Farhan Rana, Cornell University) 
 

 35

 

     
   

   
   
   
   

 21

22221122

21221121

12221112

11221111

2211
4

1

2211

ˆˆ

ˆˆ

ˆˆ

ˆˆ

ˆˆ

ˆˆˆˆˆ





















  toequalanswer nonzeroagivesabovelinethirdtheonly  

        

TraceTrace

bababbaaba

bababbaaba

bababbaaba

bababbaaba

babbaa
k

babbaaba

eeHHeeeeee

eeHHeeeeee

eeHHeeeeee

eeHHeeeeee

kHHeeeek

HHeeeeHH

 

Note that an expression of the form, 
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1.9.2 Partial Traces and Density Operators of Subsystems 
Sometimes a density operator for two (or more) systems contains too much information. The purpose of 
the density operator is to allow one to calculate averages. If one is interested in only system “a” but has 
the joint density operator ̂  for system “a” and system “b”, then one needs to “extract” a density operator 

â  for system “a”. This is done as follows. The density operator for system “a” is extracted from ̂  by 
doing a partial trace with respect to the states belonging to system “b”, i.e., 
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For unentangled states, we know that, 
 ba  ˆˆˆ   
Therefore, 

 

 

 
  aba

bbbbbba

bbbabbba

bbabbbab

eeee

eeee

eeee









ˆˆˆ

ˆˆˆ

ˆˆˆˆ

ˆˆˆˆˆ

2211

2211

2211









Tracep    

    

    

Tracep

 

Now consider the entangled state, 
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Therefore, â  is a statistical mixture of states 
a

e1  and 
a

e2  with probabilities 
4
3

 and 
4
1

, 

respectively. But note that just by looking at the full state, 
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one can tell that a measurement of the energy of system “a” will yield outcomes 1  and 2  with 

probabilities 
4
3

 and 
4
1

, respectively. The extracted density operator â  tells exactly this but in a formal 

way. Usually, entangled states of two systems yield statistical mixture like density operators for any 
subsystem after the partial trace operation.  
 


