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 Department of Electrical and Computer Engineering, Cornell University 
 

ECE 5310: Applied Quantum Optics for Photonics and Optoelectronics 
 

Fall 2013 
 

Final Exam (Due on Monday, Dec. 16 by 5:00 PM) 
 
 

 
 
1) All questions do not carry equal points  
  

First problem: 40 points 
         Second problem: 30 points 
 Third problem: 35 points 
 Fourth problem: 15 points 
 Fifth problem: 20 points 
 
 Total: 140 points 
 
2) No points will be awarded if the work that supports the answer is not shown.  
 
3) No points will be awarded if the answer is right but the reasoning is wrong. Points may also be 
deducted if the reasoning is weak.    
 
 
Exam Rules: 
 

1) You cannot discuss with anybody the exam questions or even the course material/concepts 
during the exam period (from the start time to the time when you hand in the exam)   
 

2) You have to work on the exam completely by yourself 
 

3) You cannot consult any other material other than the course material (which includes 
handouts and homeworks/solutions only). You cannot consult even the recommended texts.  
 

4) If you have question, feel free to email me 
 

5) The exam is due by 5:00 PM on Monday, Dec. 16 in PH 316.   
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Problem 1 (Gain and Photon Statistics – 40 Points) 
Consider a single-mode closed cavity in which the destruction operator for the cavity mode with 
frequency o  is given by â . The cavity contains a gain medium and is otherwise lossless.  

 
 
For this problem the following definitions might or might not prove helpful.  

i) Suppose  nP  is the probability for finding n  photons in the cavity mode. The z-transform  zP
~

 of the 

probability distribution  nP  is: 
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Some common distributions and their z-transforms are: 

Bose-Einstein or thermal distribution:      11
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Poisson distribution:      1~
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ii) The H-function for a quantum state is defined as (in the Schrodinger picture):  
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iii) The G-function for a quantum state is defined as (in the Schrodinger picture): 
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a) Suppose   00 t  (i.e. initial state of the radiation is a vacuum state). At time 0t  optical 

gain in the cavity is “switched on”, and at time  Tt  the gain is “switched off”. Assume that the gain 
involved complete population inversion and the gain is completely linear. At time Tt  , the destruction 
operator for the cavity mode can be written as: 

     GFaGTa ˆ0ˆˆ   

Find the probability  NP  of finding N  photons in the cavity at time Tt  . Exact and complete 
derivation is required. Suggestive reasoning will carry no points. Does the distribution look familiar?   
(10 points) 
 
b) ) Suppose   mt  0  (i.e. initial state of the radiation is a number state). At time 0t  optical 

gain in the cavity is “switched on”, and at time  Tt  the gain is “switched off”. Assume that the gain 
involved complete population inversion and the gain is completely linear. At time Tt  , the destruction 
operator for the cavity mode can be written as: 

Cavity 
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     GFaGTa ˆ0ˆˆ   

Find the probability  NP  of finding N  photons in the cavity at time Tt  . Obviously,    0NP  for 
mN  . Exact and complete derivation is required. Suggestive reasoning will carry no points.  

(10 points) 
 
(c) Suppose the initial state of the radiation is a statistical mixture and is given by, 
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At time 0t  optical gain in the cavity is “switched on”, and at time  Tt  the gain is “switched off”. 
Assume that the gain involved complete population inversion and the gain is completely linear. At time 

Tt  , the destruction operator for the cavity mode can be written as: 

     GFaGTa ˆ0ˆˆ   

Find the probability  NP  of finding N  photons in the cavity at time Tt  . Exact and complete 
derivation is required. Suggestive reasoning will carry no points. 
(10 points) 
 
d) Now consider a cavity containing an extremely large number of modes with the same frequency o . 

Let the total number of these degenerate modes be g . The probability of finding  m  photons in any one 
of these modes is given by the thermal (or Bose-Einstein) distribution, 
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The density matrix of each mode is as in part (c). We assume that 1n , 1~ng , and 1g . 

Suppose one now performs a measurement of the photon number inside the cavity but with no regard to 
the mode. So photons belonging to any mode can contribute to the measurement. For example, if there 
were only two degenerate modes in the cavity, i.e. 2g , the probability of finding N  photons upon 
measurement would equal the convolution, 
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But, of course, in our actual problem 1g . You need to find the probability of finding N  photons in 

the cavity upon measurement in the limit that g  is very large. You will notice that although each mode 
has a thermal distribution, the answer will look very different (and perhaps even familiar). Exact and 
complete derivation is required. Suggestive reasoning will carry no points. 
(10 points) 
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Problem 2 (Optical Parametric Oscillator – 30 Points) 
Consider an OPO as discussed in the lecture handouts (Chapter 14).  

 
a) Consider the OPO operating below threshold. Find the average photon flux coming out of the cavity at 
frequency o  as a function of the pumping rate pr . 

(15 points) 
 
b)  Consider an OPO operating below threshold. The spectral density of the radiation coming out of the 
cavity at frequency o  is given by the Fourier transform of the first order coherence function. Find the 

spectral density of the radiation coming out of the cavity at frequency o , and from your result specify 

the radiation linewidth and also specify what happens to the radiation linewidth as the pumping rate pr  is 

increased towards threshold.    
(15 points) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output  

z = 0



Pump  Cavity
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Problem 3 (Cavity Quantum Optics – 35 Points) 
 
Parts (a) and (b):  
Consider an optical cavity containing N  two-level systems, as shown below.  

 
The Hamiltonian is, 
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Assume zero detuning, o  12 . 
 
a) Suppose the initial state of the N  two-level systems and the cavity mode is, 

     0..........0 1312112


N
eeeet  

In the initial state, one of the two-level systems is in the upper state and the rest are in the lower state and 
the cavity contains no photons. Find the state of the system for time 0t .  There should be nothing 
undetermined in your answer.  
(15 points) 
 
b) Consider the following state: 
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which is a superposition of states in which one only one two-level system is in the upper state and the rest 
are in the lower state and the radiation mode has no photons. Suppose, 
   Et  0  

Find the probability  tP  that at time t  there will be a photon inside the cavity. If the probability is a 
periodic function of time then find the Rabi frequency. Does the Rabi frequency depend on the number of 
two-level systems in the cavity? 
(10 points)  
 
Part (c): 
c) Now consider two cavities, as shown below. The output of each cavity is directed at a 50-50 beam 
splitter with the relation, 
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There are detectors placed at the output of each beam splitter. 

Cavity 
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Suppose at time 0t , the state of radiation in the cavities is described by the state: 
  

ba
mnt  0  

      000ˆ  ttt   

Suppose that the photon lifetimes in the cavities are very long (which means that once in a long time a 
photon escapes from the cavity and gets detected).  
 
The system, prepared as above, is allowed to evolve in time. At time T , a single photon is detected by the 
detector placed in channel 4 of the beam splitter. Specify the state of the radiation in the cavities at time 
T after the photon has been detected. 
(10 points) 
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Problem 4 (Nonlinear Propagation and Quantum Noise – 15 Points) 
Consider wave propagation in a waveguide with a Kerr-like nonlinearity and also two-photon absorption. 
In the case of Kerr-nonlinearity the refractive index of the medium becomes intensity dependent. In the 
case of two-photon absorption, two photons are simultaneously absorbed by the medium through a 
nonlinear process and therefore the loss is intensity dependent. Both these effects need to be included 
when modeling short pulse propagation in modelocked lasers. The quantum equation for the field 
operator in the presence of these nonlinearities can be written as: 
 

              tzbtzbtzbtzbtzbtzbitzb
tvz g

,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ1  















   

 
The first term on the RHS stands for the Kerr nonlinearity and the second term models the loss due to the 
two-photon absorption.  
 
a) Is the above equation quantum mechanically consistent? Explain and explicitly show if it is or is not 
consistent. 
(5 points) 
 
b) If your answer to part (a) is negative and you choose to add noise sources on the RHS to make the 
equation consistent, give the commutation relations as well as the relevant correlation functions of all the 
noise sources.   
(10 points) 
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Problem 5 (Non-linear Frequency Up-conversion in a Cavity – 20 Points) 
Parametric up-conversion is a process in which a pump photon of frequency   combines with an idler 
photon of frequency 1  to produce a signal photon of frequency 2 , where 21   . The figure 
below shows a cartoon diagram of the setup. The cavity is assumed to support only two field modes at 
frequencies 1  and 2 . The cavity is filled with a medium that has a non-zero second order nonlinear 

susceptibility  2 ,  and the cavity is irradiated with an intense pump field at frequency  . The pump 
beam will be treated as being classical in this problem. The amplitude of the pump beam everywhere 
inside the cavity is assumed to be     oo itiEtE   expRe .  The pump beam frequency is not 
supported by the cavity and therefore the pump beam photons just “pass” through the cavity (i.e. they 
don’t stay for long in the cavity). For the modes at frequencies 1  and 2 , the cavity is assumed to be 
lossless (i.e. the photons belonging to these modes do not escape from the cavity – the cavity is closed).   
The basic physics is as follows. The photons in the pump beam at frequency   will combine with 
photons of frequency 1 that are assumed to be already present in the cavity, to produce photons of 

frequency 2  and as time goes on, photon population at frequency 2  will build up in the cavity. We 
would like to know the quantum state of the photons that get generated as a result of the up-conversion 
process and the associated dynamics.  
 

 
 
The Hamiltonian of the system (including the non-linearity) is given by the expression,  
 

    1221222111 ˆˆexpˆˆexpˆˆˆˆˆ aaitiaaitiaaaaH oo
     

 
where the positive real constant   is proportional to the product of the pump field amplitude oE  and the 

nonlinear susceptibility  2 .  
 
a) Suppose the initial quantum state of the system prior to turning on the pump field is given by the 
expression, 

Parametric up-conversion 

Cavity 

 (2)
 

Intense pump beam at 
frequency   
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which implies exactly n  photons in mode 1 and 0  photons in mode 2. Find the quantum state of the 
system at some later time t  and find the probability of finding m  photons in mode 2 at time t .  
(10 points) 
 
 
b) Suppose the initial quantum state of the system prior to turning on the pump field is given by the 
expression, 
  

21
0  t  

which implies coherent state  for mode 1 and coherent state   for mode 2 (where  and   are complex 

numbers). Find the quantum state of the system at some later time t  and indicate whether the state is a 
squeezed state, or coherent state, or a two-photon coherent state.  
(5 points) 
 
 
c) Suppose the initial quantum state of the system prior to turning on the pump field is given by the 
expression, 
  

21
0 mnt   

which implies exactly n  photons in mode 1 and m  photons in mode 2. Find the average number of 
photons in mode 2 at some later time t .  
 (5 points) 
 
 
 
 
 


