
ECE 4960

Spring 2017

Lecture 18

Nonlinear Equations and Optimization:
Monte Carlo Sampling

Edwin C. Kan

School of Electrical and Computer Engineering

Cornell University

Why Random and then Statistical?

• Nonlinear solution or optimization often needs an “initial guess”,

which affects the eventual solution.

• Often we need to sample the parameter space for initial guess, but

it can be still too expensive.

• 30 parameters in least-square fitting with 4 possible samples in

each parameter will have 430 or 1018!

• A solitaire card game has to search the sequence of 52 cards, or

1052, about 1068!!!

• How can we sample a huge space and have an idea of what has

been covered? This is a problem that has puzzled physicists and

mathematians for a long time without a solution, until...

Monte Carlo Out of Manhattan Project

• Stanislaw Ulam is in charge of investigating the reliability of a

nuclear reactor. The problem is too complex, and too important not

to know the error.

• He was in hospital playing solitaire and tried different sampling to

predict the group of outcomes.

• He then presented the initial idea to John von Neumann. Together

they invented a new method with code name: Monte Carlo.

Stanislaw Ulam

(1909 – 1984)
John von Neumann

(1903 – 1957)

Large Number of Sampling or Testing

• Let v be a random variable (now v is just a scalar, but later on it can

be generalized to a vector with a large rank) whose distribution

density function p(v) is unknown.

• We can denote E(v) = A and var(v) = 2, which we do not know

their values either. A Monte Carlo sampling of v is represented by

a group of N random sampling of vk by defining:

• RN is called the bias of the present estimator of N sampling.

AARv
N

A NN

N

k

kN  


ˆ;
1ˆ

1

Monte Carlo Simulation

• By the Central Limit Theorem and the Large-Number Theorem:

1. E(RN) = 0,

– Errors of vk is random and equally above and below . The choice of these

(v1, v2, …, vN) that satisfies this property is called a consistent estimator.

2. var(RN) = 2/N,

– when the expected variance will become smaller with increasing N.

3. With N , RN approaches a standard normal distribution
function N(0,1) with zero mean and unit standard deviation:

  









2
exp

2

1 2v
vpRN



Main Properties of Monte Carlo

• Even we do not know A,  or p(v), when we have N samples, we

can estimate A by E(RN) = 0 and estimate 2 by var(RN) = 2/N,

i.e., we have an idea of the error bar.

• We can think that the distribution of RN is approximately:

where Z ~ N(0,1), i.e., the “bias” (or error) in the Monte Carlo

testing is of the order of N–0.5 with a prefactor  (the variance of the

problem under study)!

• Power of Monte Carlo: as long as we can do N testings, we can

tackle a problem we know little about its behavior.

• Limitation of Monte Carlo: the statistical error is  N–0.5 , i.e.,

making N to be four times larger can only improve the accuracy by

2 times, worse than even bisection.

NZ /

Improvement in Monte Carlo Sampling

• We can indeed improve the way we choose samples in Monte Carlo

to make better accuracy improvement.

• This is generally called the variance reduction in Monte Carlo,

– Control variates: Know the mean of the original problem by

physical laws or by a similar problem.

– Antithetic variates: Know another p(v) that has the same

statistical properties of the problem under study (they are called

symmetry pairs).

– Importance sampling: Know the likelihood of the distribution

function.

– Statistical amplification: Explore more rare cases by give

statistical weights.

Program Practice

Calculating  by Monte Carlo: We know the area of a quarter circle

is /4 (and assume that we do not know the value of ). We can

transform the calculation into a statistical sampling by estimating the

probability of random distributions in a square to be within the circle:

double x[i] = random();

double y[i] = random();

integer count = 0;

for i = 1, N; i++

if (x[i]*x[i] + y[i]*y[i] < 1) count++;

double pi = 4*count/N;

Now observe your error in estimation for N = 10, 100, , … 106.

If you have your power-law fitting still, plot out the N vs. error.

(1,0)

(0,1)

Observation

• To calculate  correctly, x and y need to be uniformly distributed

between (0, 1). Any bias in x and y will become a bias in the

estimate of . You can see them as distortion in the geometry!

• We can enlarge the search domain without changing the answer.

More random points will be wasted. This means the choice of

sampling can affect how fast the convergence will be (the prefactor

 we discussed before).

• The precision of  will be proportional to from our previous theory.

Random Number Generation

• Most programming languages support random(), which ideally

should have the following properties:

1. Uniformly distributed between [0, 1].

2. Mean = 1; Variance = 1/12.

3. Any segment of number sequence will have no correlation with the other.

4. The sequence is unpredictable, or the sequence has no memory effect.

• Most such functions are only pseudo random numbers

• C/C++ uses a seed (often the program counter as an integer):

x[i+1] = (a*x[i] + c) mod m;

return double x[i+1]/m;

where a, c and m are large prime numbers.

Pseudo Random Numbers

“Anyone who considers arithmetical methods of producing random

digits is, of course, in a state of sin. For, as has been pointed out

several times, there is no such thing as a random number — there are

only methods to produce random numbers, and a strict arithmetic

procedure of course is not such a method.”

- John von Neumann

John von Neumann

(1903 – 1957)

True Random Numbers

• Thermal noises (vulnerable to nitrogen spraying),

• Single-particle noises (aka random telegraph noises, which may not

have a uniform spectrum)

• Quantum noises (based on uncertainty principles)

• De-biasing to obtain a uniform distribution.

Random Telegraph Noise Raw Data

do {
For each up/down-time in raw data

Output = LSB(up/down-time);
Shift right up/down-time by one bit;

End for
} repeat until all up/down time are zero;

Perform von Neumann de-biasing

Convert to binary random sequence

Random Numbers with a Given Distribution

• For many sampling problems, we may need a random number that

follows a given distribution, instead of uniformly distributed.

• For example, when random numbers are used to sample a gas

molecule velocity, we know that v would follow the

thermodynamic law and has a Boltzmann distribution.

• Transformation from a uniformly distributed variable to another

distribution function is a straightforward mathematical procedure.

• Denote the probability density function of a random variable v as

p(v), and the corresponding cumulative distribution function as

F(v),

   


v

dxxpvF)(

Cumulative Distribution Function (CDF)

• We know the follow properties of p(v) and F(v).

1.

2.

3.

    vvFvp  ;1,0

    ;1lim;0lim 


vFvF
vv

F(v) is a monotonically increasing function

Transformation of Distribution Functions

• From a uniformly distributed random variable in [0, 1] generated

by random():

1. Call random() to obtain a random number u between [0, 1].

2. We know that F(u) = u.

3. Find v that gives F(v) = u, or v = F-1(u). The random variable

v will now follow p(v).

 
 

2

22 /exp2

b

brr
rp




Program Practice

• To generate v with distribution function of p(v) from random()

• Use  = 0.2.

• Generate 1,000 instances of v and sort the vector v. Plot p(v) and

F(v) for 0  v < 10 with a bin size of 0.5.

• Beside visualization, is there another way for verification?

 






 

00

0

v

ve
vp

v

uedxevF v
v

x  


 1)(

0

 uv  1ln
1



Known Closed-form of CDF!!

CDF Does Not Have Closed Forms

• To generate v with distribution function of p(v) from random()

• Create a table to find F-1(u) = v.

– Numerical integration

– Interpolation from local analysis

Unknown Closed-form of CDF!!  









2
exp

2

1 2v
vp



  


v

dxxpvF)(

Confidence Interval

• Monte Carlo sampling is to generate v from the random number

function with the knowledge of F(v).

• We do not need to know the closed form of F(v), but just a way to

compute F-1(u) from formula, table lookup or rejection rules.

• After obtaining N samples of v, we can use them to understand the

moment, the physical phenomena governed by v, or simply to

evaluate A (1st moment) and  (2nd moment).

• As long as N is sufficiently large, we know our N samples will give

us a reasonable estimate, as RN will approach a standard normal

distribution function.

• The 67% confidence interval will be:

• The 99.7% confidence interval will be:











N
A

N
A NN

 ˆ,ˆ











N
A

N
A NN

 3ˆ,
3ˆ

Monte Carlo for Initial Guess Generation

• For optimization on parameter extraction, when we need an initial

guess in a large parameter space (say m= 20), we will use 20

uniformly generated random numbers to be transformed to the

known or guessed distribution function of each parameter. That

would serve as one initial guess.

• We can repeat the process for N = 200 times to obtain a reasonable

confidence that our minimal can be close to the global minimum.

• The quality of the initial guess (or the coverage of the confidence

interval) will depend on our understanding of the distribution

function of each parameter.

Monte Carlo for Optimization Search:

Simulated Annealing

• We can use the Monte Carlo procedure to the optimization search

process directly.

• The most famous example is the simulated annealing, which

resembles the natural process of relaxation to the energy minimum.

• For example, we know that diamond is the lowest-possible energy

form for the group of carbon atoms.

• However, in many natural scenarios, the group of carbon atoms

will just become a local minimum of soot (such as the product of

burning, where the product is quenched quickly).

• To form diamond, the nature would have a high temperature first to

allow the atoms to go to their preferred position (actually a high

pressure is needed as well, so that they do not go too wildly), and

then gradually cool down to formulate diamond.

Optimization by Simulated Annealing

• A correction step is determined by the Newton method or the

steepest descent method,

• Use the line search method to determine t for the most

improvement possible in this step

• When no improvement can be found in all searched t, instead of

declaring the minimum has been found, we will take the step with

the size of t anyway according to the probability function:

• The value of t will be determined by the Monte Carlo sampling

with the distribution function p(t).

  






 


T

V
tp exp

   
2

)()()(kkk xVxtxVV




Temperature in Simulated Annealing

• The temperature parameter T is analogous to the natural annealing

process.

– When T is very large, large penalty on V has a higher probability to be

taken.

– When T is nearly zero, only very small V will have reasonable probability.

– For a reasonable search of the global minimum, T can be initially large, and

then gradually becomes small during the final quenching process.

• Simulated annealing has been broadly applied to problems that

have very large parameter space and possibly many local minima

(aka, mixed determined or ambiguity).

• For many problems such as chess, the strategy of setting T can be

learned from the existing examples to reduce the searching time.

This machine learning strategy is for sure left to students who will

take the specific course in artificial intelligence or machine

learning.

