ECE 4960
 Spring 2017

Lecture 17

Nonlinear Equations and Optimization: Geometry Optimization: Spline Fitting

Edwin C. Kan
School of Electrical and Computer Engineering
Cornell University

Problems from the Ancient Time

- Vessels and canoes need fixed sizes (so that they can fit with other parts and easy for carpenters), but the shape should be smooth, as a box can easily experience much larger water resistance or drag.
- Polynomial fitting
- Fixed-point spline fitting
- NURBS (non-uniform rational basis spline)
- Cubic least-square spline fitting

Polynomial Fitting in 2D

- If we know $d+1$ points in the $x-y$ plane, i.e., ,

$$
\begin{gathered}
\left(x_{k}, y_{k}\right) \text { for } k=0,1,2, \ldots, d \\
\text { where } x_{i} \neq x_{j} \text { if } i \neq j
\end{gathered}
$$

- There is a polynomial function of order d that can pass through these $d+1$ points:

$$
p(x)=p_{0}+p_{1} x+p_{2} x^{2}+\ldots+p_{d} x^{d}
$$

$$
p\left(x_{k}\right)=y_{k} \quad \square \quad[V] \vec{p}=\stackrel{\rightharpoonup}{y}
$$

Vandermonte matrix $\operatorname{Rank}(V)=d+1$

$$
[V]=\left[\begin{array}{cccc}
1 & x_{0} & \ldots & x_{0}^{d} \\
1 & x_{1} & \ldots & x_{1}^{d} \\
\ldots & \ldots & \ldots & \ldots \\
1 & x_{d} & \ldots & x_{d}^{d}
\end{array}\right]
$$

$$
\vec{p}=\left[\begin{array}{c}
p_{0} \\
p_{1} \\
\ldots \\
p_{d}
\end{array}\right]
$$

$\vec{y}=\left[\begin{array}{l}y_{0} \\ y_{1} \\ \ldots \\ y_{d}\end{array}\right]$

Lagrange Polynomials

- There is always a solution to the polynomial fitting, which can be expressed through the Lagrange polynomials:

$$
l_{k}(x)=\frac{\prod_{\substack{j \neq k}}\left(x-x_{j}\right)}{\prod_{\substack{j \neq k \\ j=0,1, \ldots d}}\left(x_{k}-x_{j}\right)}
$$

- For example, for $d=2, x_{0}=0, x_{1}=2, x_{2}=3$, we have the first two Lagrange polynomials as:
$l_{0}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}=\frac{1}{6}\left(x^{2}-5 x+6\right) ; \quad l_{1}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}=x^{2}-3 x$
- We have $l_{k}\left(x_{j}\right)=\delta_{j k}=\left\{\begin{array}{ll}1 & j=k \\ 0 & j \neq k\end{array}\right.$. Finally, $p(x)=\sum_{k=0}^{d} y_{k} l_{k}(x)$

Vandermonte Matrix

- As $[V] p=y$ has a solution, the vandermonte matrix V is nondegenerate.
- Polynomial fitting is known to have many oscillations, especially when d is large. It is seldom used directly
- But polynomial fitting provides a useful intuitive understanding for the much more important spline fitting.

Geometrical Fitting

- A straight line between two points: ruler; ink line.
- Circle: compass
- Angles: protractor
- Smooth curve with control or anchor points?

Spline Curves

- Classic carpentry tools that use the minimization of elastic energy of the "spline" to get the smooth curve that passes through the "anchor" or duck or nail or knot points with continuous $1^{\text {st }}$ and $2^{\text {nd }}$ derivatives.
- Important for vehicular curves and computer graphics

Piecewise Polynomials

- Let a spline curve S which has $d+1$ fixed points it has to pass through between $[a, b]$:

$$
a=x_{0}<x_{1}<x_{2}<\ldots<x_{d-1}<x_{d}=b
$$

- There are d intervals where we need d piecewise polynomials to describe S :

$$
\begin{array}{ll}
S(x)=p_{1}(x) ; & x_{0} \leq x<x_{1} \\
S(x)=p_{2}(x) ; & x_{1} \leq x<x_{2} \\
\ldots & \\
S(x)=p_{d}(x) ; & x_{d-1} \leq x<x_{d}
\end{array}
$$

- If we hope that $S(x)$ is smooth to the $n-1$ derivative, we will consturct a n-degree spline curves:

$$
p_{i}^{(j)}\left(x_{i}\right)=p_{i+1}^{(j)}\left(x_{i}\right) \quad \text { for } i=1, \ldots, d-1 ; \quad j=0, \ldots, n-1
$$

Basis Splines

- Basis spline (b-spline): curves constrained by anchors and continuous derivatives
- The most common b-spline has $n=3$ and is $\mathbf{C - 2}$ continuous everywhere (including anchors).
- Normalize cubic $p_{i}(x)$ to $q_{i}(x)$ within the i-th interval

$$
\begin{aligned}
& q_{i}(x) \equiv(1-t) y_{i-1}+t y_{i}+t(1-t)\left(a_{i}(1-t)+b_{i}(t)\right) \\
& t=\frac{x-x_{i-1}}{x_{i}-x_{i-1}} ; \quad a_{i}=k_{i-1}\left(x_{i}-x_{i-1}\right)-\left(y_{i}-y_{i-1}\right) ; \quad b_{i}=-k_{i}\left(x_{i}-x_{i-1}\right)+\left(y_{i}-y_{i-1}\right) ;
\end{aligned}
$$

- Automatically satisfied (but we do not know the value of k_{i}):

$$
\begin{aligned}
& q_{i}\left(x_{i}\right)=q_{i+1}\left(x_{i}\right)=y_{i} ; \quad q_{i-1}\left(x_{i-1}\right)=q_{i}\left(x_{i-1}\right)=y_{i-1} ; \\
& q_{i}^{\prime}\left(x_{i}\right)=q_{i+1}^{\prime}\left(x_{i}\right)=k_{i} ; \quad q_{i-1}^{\prime}\left(x_{i-1}\right)=q_{i}^{\prime}\left(x_{i-1}\right)=k_{i-1} ;
\end{aligned}
$$

Determine Unknown $1^{\text {st }}$ Derivative to Guarantee Continuous $2^{\text {nd }}$ Derivative

$$
q_{i}^{\prime \prime}\left(x_{i}\right)=q_{i+1} "\left(x_{i}\right) \text { for } i=1, \ldots d-1
$$

- Only $d-1$ conditions for $d+1 k_{i}$'s,
- Two additional conditions needed
$-q_{i}{ }^{\prime \prime}\left(x_{0}\right)=q_{i+1}{ }^{\prime \prime}\left(x_{d}\right)=0 \quad \sqrt{ }$
- Give k_{0} and k_{d} directly

$$
\begin{aligned}
& \frac{k_{i-1}+2 k_{i}}{x_{i}-x_{i-1}}+\frac{2 k_{i}+k_{i+1}}{x_{i+1}-x_{i}}=3\left(\frac{y_{i}-y_{i-1}}{\left(x_{i}-x_{i-1}\right)^{2}}+\frac{y_{i+1}-y_{i}}{\left(x_{i+1}-x_{i}\right)^{2}}\right) \\
& q^{\prime \prime}\left(x_{0}\right)=2 \cdot \frac{3\left(y_{1}-y_{0}\right)-\left(k_{1}+2 k_{0}\right)\left(x_{1}-x_{0}\right)}{\left(x_{1}-x_{0}\right)^{2}}=0 \\
& q^{\prime \prime}\left(x_{d}\right)=-2 \cdot \frac{3\left(y_{d}-y_{d-1}\right)-\left(k_{d}+2 k_{d-1}\right)\left(x_{d}-x_{d-1}\right)}{\left(x_{d}-x_{d-1}\right)^{2}}=0
\end{aligned} \quad \square\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & 0 \\
a_{21} & a_{22} & \ldots & 0 \\
0 & \ldots & \ldots & \ldots \\
0 & \ldots & a_{d-1 d} & a_{d d}
\end{array}\right]\left[\begin{array}{l}
k_{0} \\
k_{1} \\
\ldots \\
k_{d}
\end{array}\right]=\left[\begin{array}{l}
\ldots \\
\ldots \\
\ldots \\
\ldots
\end{array}\right]
$$

Hacker Practice

Construct a B-Spline curve with the following anchor points

x	1.0	2.0	3.0	4.0	5.0	6.0
y	0.0	1.0	0.0	-1.0	0.0	1.0

Define S as piecewise b-spline functions, and if you can, plot it out!

Smoothing Splines and Control Points

- Least-square fitting of spline curves, or smoothing splines, with the control points instead of anchor points.
- The control points are where the piecewise cubic functions are separated, although $S(x)$ is C-2 continuous everywhere.
- We may have a lot of experimental points

NURBS (Non-Uniform Rational B-Spline)

- 2D extenstion to 3 D , i.e., instead of finding a spline curve, we are finding the spline surface that passes through anchor points, or the smoothing spline surface that gives the leastsquare fitting.
- Combining with all spline features ($\mathrm{C}-2$ continuity, anchor or control points, etc.), we can now see how NURBS (non-uniform rational bspline) are used universally in mechanical designs, animation and image processing

Poor surface quality

NURBS model

Pure, smooth highlights

