ECE 4960
 Spring 2017

Lecture 16

Nonlinear Equations and Optimization: Model Parameter Extraction

Edwin C. Kan
School of Electrical and Computer Engineering
Cornell University

Models for the Real World

- To describe our complex world, often a model is created with the independent variables $\left(x_{1}, x_{2}, \ldots x_{n}\right)$ and meaningful model parameters $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$.
- A "scalar" model S can then be generally expressed as:

$$
S_{\text {model }}=S\left(x_{1}, x_{2}, \ldots x_{n} ; a_{1}, a_{2}, \ldots, a_{m}\right)
$$

- S can be the current into an electronic block, where x_{1}, x_{2}, \ldots are the control input voltages, and a_{1}, a_{2}, \ldots are the parameters describing the blocks (e.x., the resistance and capacitance values that determines the time constants how x_{1}, x_{2}, \ldots will affect S).
- S can be your stock portfolio value, where x_{1}, x_{2}, \ldots are the individual stock prices, and a_{1}, a_{2}, \ldots are the shares you have.

Measurements of the Real World

- We can often make measurements of S with given values of the independent variables $\left(x_{1}, x_{2}, \ldots x_{n}\right)$, including noises and uncertainties:

$$
S_{\text {measured }}=S\left(x_{1}, x_{2}, \ldots x_{n}\right)
$$

- Notice that for every legitimate $\left(x_{1}, x_{2}, \ldots x_{n}\right)$, there can be a $S_{\text {measured }}$. We can have thousands of $S_{\text {measured }}$ when we sweep the values of $\left(x_{1}, x_{2}, \ldots x_{n}\right)$.
- S can be a vector of rank l as well, but we will restrict here for S to be a scalar and we can generalize the case of the S vectors by taking $\|S\|_{2}$.

Least-Square Model Parameter Extraction

- The least-square parameter extraction to construct the model parameters $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ is an optimization problem to minimize the following function V that describe the least-square fitting:

$$
V=\sum_{i}\left(S_{i, \bmod e l}-S_{i, \text { measured }}\right)^{2} \quad \begin{aligned}
& \text { for all } i \text {-th instances with the } \\
& \text { same }\left(x_{1}, x_{2}, \ldots x_{n}\right)
\end{aligned}
$$

- To minimize the error V for the model fitting, it is equivalent to solve the nonlinear equations:

$$
\frac{\partial V}{\partial a_{j}}=0 ; \quad \forall j=1 \ldots m
$$

Properties of Least-Square Extraction

- As V is always positive, the Hessian matrix is positive definite and we will always reach a minimum (least in "least square").
- We will have the exact m equations for the m parameters $\left(a_{1}, a_{2}, \ldots\right.$, a_{m}), so no under-determined or over-determined problems.
- As V is nonlinear, even when S is linear, there may be more than one set of solutions.
- The purpose of the model parameter extraction can be:
- For estimation of S at an instance of $\left(x_{1}, x_{2}, \ldots x_{n}\right)$ that we do not have direct measurements.
- $S_{\text {measurement }}$ may not be smooth, which makes taking the numerical derivative extremely noisy. However, $S_{\text {model }}$ can be often made C- ∞, meaning all derivatives of S are continuous.
- For example, in power network, we can ask what x can make S to be unstable (by definition, you can not measure the unstable situation.

Least-Square Fitting of a Linear Line

- The model will now be linear, i.e., $y=a x+b$, where x and y are random variables (but they will have noises during measurements) and a and b are parameters.
- Four measurements available (containing errors): $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$, $\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$
$V(a, b)=\left(a x_{0}+b-y_{0}\right)^{2}+\left(a x_{1}+b-y_{1}\right)^{2}+\left(a x_{2}+b-y_{2}\right)^{2}+\left(a x_{3}+b-y_{3}\right)^{2}$

$$
\begin{aligned}
& \frac{\partial V(a, b)}{\partial a}=2 x_{0}\left(a x_{0}+b-y_{0}\right)+2 x_{1}\left(a x_{1}+b-y_{1}\right)+2 x_{2}\left(a x_{2}+b-y_{2}\right)+2 x_{0}\left(a x_{3}+b-y_{3}\right)=0 \\
& \frac{\partial V(a, b)}{\partial b}=2\left(a x_{0}+b-y_{0}\right)+2\left(a x_{1}+b-y_{1}\right)+2\left(a x_{2}+b-y_{2}\right)+2\left(a x_{3}+b-y_{3}\right)=0
\end{aligned}
$$

Reorganized:

$$
\begin{gathered}
f_{1}=\left(x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) a+\left(x_{0}+x_{1}+x_{2}+x_{3}\right) b-\left(x_{0} y_{0}+x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}\right)=0 \\
f_{2}=\left(x_{0}+x_{1}+x_{2}+x_{3}\right) a+4 b-\left(y_{0}+y_{1}+y_{2}+y_{3}\right)=0
\end{gathered}
$$

Least-Square Fitting of a Linear Line

$$
\begin{gathered}
{[H]_{V}=[J]_{f 1, f 2}=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial a} & \frac{\partial f_{1}}{\partial b} \\
\frac{\partial f_{2}}{\partial a} & \frac{\partial f_{2}}{\partial b}
\end{array}\right]=\left[\begin{array}{cc}
x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2} & x_{0}+x_{1}+x_{2}+x_{3} \\
x_{0}+x_{1}+x_{2}+x_{3} & 4
\end{array}\right]} \\
{[R H S]=\left[\begin{array}{c}
x_{0} y_{0}+x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3} \\
y_{0}+y_{1}+y_{2}+y_{3}
\end{array}\right]}
\end{gathered}
$$

- The Jacobian matrix does not contain a or b : one step linear solution!
- Try this out:

x	0.0	1.5	2.2	3.0	4.3	5.2
y	1.1	3.9	5.5	7.5	10.0	11.2

Least-Square Fitting of Power Law

- $y=a x^{m}$, where x and y are random variables (but they will have noises during measurements) and a and m are parameters.
- Four measurements available (containing errors): $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$, $\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$

$$
\begin{aligned}
& V(a, m)=\left(a x_{0}^{m}-y_{0}\right)^{2}+\left(a x_{1}^{m}-y_{1}\right)^{2}+\left(a x_{2}^{m}-y_{2}\right)^{2}+\left(a x_{3}^{m}-y_{3}\right)^{2} \\
& \frac{\partial V(a, m)}{\partial a}=2 x_{0}^{m}\left(a x_{0}^{m}-y_{0}\right)+2 x_{1}^{m}\left(a x_{1}^{m}-y_{1}\right)+2 x_{2}^{m}\left(a x_{2}^{m}-y_{2}\right)+2 x_{3}^{m}\left(a x_{3}^{m}-y_{3}\right)=0
\end{aligned}
$$

$$
\frac{\partial V(a, m)}{\partial m}=2 a \cdot\left[\ln x_{0} \cdot x_{0}^{m}\left(a x_{0}^{m}-y_{0}\right)+\ln x_{1} \cdot x_{1}^{m}\left(a x_{1}^{m}-y_{1}\right)+\ln x_{2} \cdot x_{2}^{m}\left(a x_{2}^{m}-y_{2}\right)+\ln x_{3} \cdot x_{3}^{m}\left(a x_{3}^{m}-y_{3}\right)\right]=0
$$

Reorganized:

$$
\begin{aligned}
& f_{1}=\left(x_{0}^{2 m}+x_{1}^{2 m}+x_{2}^{2 m}+x_{3}^{2 m}\right) a-\left(x_{0}^{m} y_{0}+x_{1}^{m} y_{1}+x_{2}^{m} y_{2}+x_{3}^{m} y_{3}\right)=0 \\
& f_{2}=\left(\ln x_{0} \cdot x_{0}^{2 m}+\ln x_{1} \cdot x_{1}^{2 m}+\ln x_{2} \cdot x_{2}^{2 m}+\ln x_{3} \cdot x_{3}^{2 m}\right) a^{2}- \\
& \quad\left(\ln x_{0} \cdot x_{0}^{m} y_{0}+\ln x_{1} \cdot x_{1}^{m} y_{1}+\ln x_{2} \cdot x_{2}^{m} y_{2}+\ln x_{3} \cdot x_{0}^{m} y_{3}\right) a=0
\end{aligned}
$$

Least-Square Fitting of Power Law

$[H]_{V}=[J]_{f 1, f 2}=\left[\begin{array}{ll}\frac{\partial f_{1}}{\partial a} & \frac{\partial f_{1}}{\partial m} \\ \frac{\partial f_{2}}{\partial a} & \frac{\partial f_{2}}{\partial m}\end{array}\right]=\left[\begin{array}{cc}x_{0}^{2 m}+x_{1}^{2 m}+x_{2}^{2 m}+x_{3}^{2 m} & \frac{\partial f_{1}}{\partial m} \\ 2 a\left(\ln x_{0} \cdot x_{0}^{2 m}+\ln x_{1} \cdot x_{1}^{2 m}+\ln x_{2} \cdot x_{2}^{2 m}+\ln x_{3} \cdot x_{3}^{2 m}\right)- & \frac{\partial f_{2}}{\partial m} \\ \left(\ln x_{0} \cdot x_{0}^{m} y_{0}+\ln x_{1} \cdot x_{1}^{m} y_{1}+\ln x_{2} \cdot x_{2}^{m} y_{2}+\ln x_{3} \cdot x_{0}^{m} y_{3}\right) & \partial]\end{array}\right.$

- The Jacobian matrix contains a or b : nonlinear and initial guess is needed!
- Try this out:

x	1.0	4.5	9.0	20	74	181
y	3.0	49.4	245	1808	2.2×10^{4}	7.3×10^{4}

A Preliminary Summary of Least Square

- V will almost NEVER be 0 or even close to 0 , but the value of the eventual V carries the information of how consistent the model and the measurement are, and the noises/uncertainties in measurement.
- V naturally contains the "weighting", which can be seen in the x and $\log (x)$ examples.
- V can be readily normalized in different ways.
- The model can be thought as a "rule" or a "component" in the real world. Testing of the magnitude of V is in different model is an important statistical analysis tool, for example: principal component analysis (PCA) and machine learning.

