ECE 4960
 Spring 2017

Lecture 15

Nonlinear Equations and Optimization: The Newton Method for Nonlinear Optimization

Edwin C. Kan
School of Electrical and Computer Engineering
Cornell University

Optimization of Nonlinear Functions

- Finding the optimization of a scalar nonlinear objective function $V\left(x_{1}, x_{2}, \ldots x_{n}\right)$ can be defined by the local Taylor expansion with respect to the vector x as:

$$
V(\stackrel{\rightharpoonup}{x}+\Delta \stackrel{\rightharpoonup}{x})=V(\vec{x})+\nabla V(\vec{x}) \cdot \Delta \vec{x}+\frac{1}{2}(\Delta \vec{x})^{t} \cdot[H] \Delta \vec{x}
$$

- where the gradient function $\nabla V(\vec{x})$ and the Hessian matrix $[H$] are defined by:

$$
\nabla V\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\begin{array}{l}
\frac{\partial V\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{1}} \\
\frac{\partial V\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{2}} \\
\frac{\partial V\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{n}}
\end{array}\right) \text { or in vector form: } \nabla V(\bar{x})=\left(\frac{\partial V\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{j}}\right)
$$

Nonlinear Optimization

- If V is only linearly dependent on x, then linear programming teaches us that the optimal values have to be on the boundary. The solution method is a simple search on the constraint function.
- From the equivalency, the solution vector x that minimizes V will be the x that solves $\nabla V(\vec{x})=0$, provided that $[H]$ is positive definite.

$$
\nabla V\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\begin{array}{l}
\frac{\partial V\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{1}} \\
\frac{\partial V\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{2}} \\
\frac{\partial V\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{n}}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\ldots \\
0
\end{array}\right)
$$

Newton's Method for Nonlinear Optimization

1. Set up the variables x and evaluation of $V(x)$ AND $\nabla V(\vec{x})$.
2. Make up an initial guess $x^{(k)}$, starting from $k=0$. Notice that this is a difficult choice and has dominant influence on the convergence behavior.
3. Evaluate $\nabla V(\vec{x})$ and the Hessian matrix for the update vector:

$$
\Delta \vec{x}^{(k)}=-\underbrace{\left[H\left(\vec{x}^{(k)}\right)\right.}_{[[J]}]^{-1} \underbrace{\nabla V\left(\vec{x}^{(k)}\right)}_{f\left(\bar{x}^{(k)}\right)}[H]=\left[\begin{array}{llll}
\frac{\partial}{\partial x_{1}}\left(\frac{\partial V}{\partial x_{1}}\right) & \frac{\partial}{\partial x_{2}}\left(\frac{\partial V}{\partial x_{1}}\right) & \cdots & \frac{\partial}{\partial x_{n}}\left(\frac{\partial V}{\partial x_{1}}\right) \\
\frac{\partial}{\partial x_{1}}\left(\frac{\partial V}{\partial x_{2}}\right) & \frac{\partial}{\partial x_{2}}\left(\frac{\partial V}{\partial x_{2}}\right) & \cdots & \frac{\partial}{\partial x_{n}}\left(\frac{\partial V}{\partial x_{2}}\right) \\
\frac{\partial}{\partial x_{1}}\left(\frac{\partial V}{\partial x_{n}}\right) & \frac{\partial}{\partial x_{2}}\left(\frac{\partial V}{\partial x_{n}}\right) & \cdots & \frac{\partial}{\partial x_{n}}\left(\frac{\partial V}{\partial x_{n}}\right)
\end{array}\right]
$$

4. Evaluate the norm of $\left\|\Delta x^{(k)}\right\|_{2}$ and $V\left(x^{(k)}\right)$. Stop if $\left\|\Delta x^{(k)}\right\|_{2}<$ tolerance (often set between 10^{-7} to 10^{-9}).
5. Update $x^{(k+1)}=x^{(k)}+\Delta x^{(k)}, k++$, and return to Step 3 to iterate.

(Reminder) The Newton Raphson Method

1. Set up the variables and evaluation of $f(x)$ for solving x that satisfis the nonlinear equation $f(x)=0$
2. Make up an initial guess $x^{(k)}$, where $k=0$ initially Notice that this is a difficult choice and has dominant influence on the convergence behavior.
3. Evaluate $f\left(x^{(k)}\right)$ and its slope $f^{\prime}\left(x^{(k)}\right)$ or the Jacobian matrix J for the multi-variate case. Calculate the update vector:
$\Delta x^{(k)}=-f\left(x^{(k)}\right) / f^{\prime}\left(x^{(k)}\right)$ or $\quad \Delta \vec{x}^{(k)} \cong-\left[J\left(\vec{x}^{(k)}\right)\right]^{-1} \cdot \vec{f}\left(\vec{x}^{(k)}\right)$
4. Evaluate the norm of $\left\|\Delta x^{(k)}\right\|_{2}$ and $\left\|f\left(x^{(k)}\right)\right\|_{2}$. Stop if $\left\|\Delta x^{(k)}\right\|_{2}$ or $\left\|f\left(x^{(k)}\right)\right\|_{2}<$ tolerance (often set between 10^{-7} to 10^{-9}).
5. Update $x^{(k+1)}=x^{(k)}+\Delta x^{(k)}, k++$, and return to Step 3 to iterate.

Local and Global Minimization

- At the minimum point: $\vec{x} *$

$$
\nabla V\left(\stackrel{\rightharpoonup}{x}^{*}\right)=0 \quad V\left(\stackrel{\rightharpoonup}{x}^{*}+\Delta \stackrel{\rightharpoonup}{x}\right)>V\left(\stackrel{\rightharpoonup}{x}^{*}\right)
$$

- If and only if:

$$
(\Delta \vec{x})^{t}\left[H\left(\vec{x}^{*}\right)\right] \Delta \vec{x}>0, \quad \forall \Delta \vec{x}
$$

- Local minimum at \vec{x}^{*} : For a given $R>0$, if $\quad V\left(\vec{x}^{*}+\Delta \vec{x}\right) \geq V\left(\bar{x}^{*}\right) \quad \forall\|\Delta \vec{x}\|<R$
- Strict local miminum: For a given $R>0$, if $\quad V\left(\bar{x}^{*}+\Delta \bar{x}\right)>V\left(\bar{x}^{*}\right) \quad \forall\|\Delta \bar{x}\|<R$
- Global minimum: $R \rightarrow \infty$
- The minimum is nondegenerate if [H] is positive definite.

Hacker Practice

Use the quasi-Newton method with line search to solve the nonlinear optimization function V by making $x^{(0)}=(0,0)$ and the local analysis of the Hessian matrix by 10^{-4} perturbation.

$$
V=\left(3 x_{1}^{2}+x_{2}-4\right)^{2}+\left(x_{1}^{2}-3 x_{2}+2\right)^{2}
$$

Report $\left\|x^{(k)}\right\|_{2},\left\|\Delta x^{(k)}\right\|_{2}, t, V\left(x^{(k)}\right)$.
Can you observe the quadratic convergence?

We know there are two local minima where $V=0$ at $(1,1)$ and $(-1,1)$. How will you change the initial guess to get both?

Descent Methods for Nonlinear Optimization

- A descent direction $\Delta x^{(k)}$ is defined as:

$$
\vec{x}^{(k+1)}=\vec{x}^{(k)}+\Delta \vec{x}^{(k)} \quad \square \quad V\left(\vec{x}^{(k+1)}\right)=V\left(\bar{x}^{(k)}+\Delta \vec{x}^{(k)}\right)<V\left(\bar{x}^{(k)}\right)
$$

- Or equivalently

$$
V\left(\vec{x}^{(k)}+\Delta \vec{x}^{(k)}\right)-V\left(\vec{x}^{(k)}\right)=\nabla V\left(\vec{x}^{(k)}\right) \cdot \Delta \vec{x}<0
$$

- The Newton direction is a choice of the descent direction, as

$$
\begin{aligned}
& \Delta \vec{x}^{(k)}=-\left[H\left(\vec{x}^{(k)}\right)\right]^{-1} \nabla V\left(\vec{x}^{(k)}\right) \\
& \begin{aligned}
V\left(\vec{x}^{(k)}\right. & \left.+\Delta \vec{x}^{(k)}\right)-V\left(\vec{x}^{(k)}\right) \cong \nabla V\left(\vec{x}^{(k)}\right) \cdot \Delta \vec{x} \\
& =-\nabla V\left(\vec{x}^{(k)}\right) \cdot\left[H\left(\vec{x}^{(k)}\right)\right]^{-1} \nabla V\left(\vec{x}^{(k)}\right)<0
\end{aligned}
\end{aligned}
$$

As long as $[H]$ is positive definite

The Steepest Descent Method

- Use of line search will help stabilize most descent methods.
- Evaluation of $[H]$ can be too expensive, just like [J]. So we will take approximations and sacrifice the quadratic convergence

$$
\Delta \vec{x}^{(k)}=-t \nabla V\left(\vec{x}^{(k)}\right)=-t \frac{V\left(x_{1}, x_{2}, \ldots, x_{i}+\Delta x_{i}, \ldots, x_{n}\right)-V\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\Delta x_{i}}
$$

- Or similar to the Gauss-Seidel method that uses the best available V during evaluation:

$$
\Delta \vec{x}^{(k)}=-t \frac{V\left(x_{1}+\Delta x_{1}, x_{2}+\Delta x_{2}, \ldots, x_{i}+\Delta x_{i}, \ldots, x_{n}\right)-V\left(x_{1}+\Delta x_{1}, x_{2}+\Delta x_{2}, \ldots, x_{i}, \ldots x_{n}\right)}{\Delta x_{i}}
$$

The Conjugate Gradient Method

- During the steepest descent, we can make each $\Delta x^{(k)}$ to be orthogonal to the previous steps of to $\Delta x^{(0)}$ to $\Delta x^{(k-1)}$ by taking superposition with the previous steps.
- For example, for $n=2$, if $\Delta x^{(0)}=(1,0)$, and the first calculation of $\Delta x^{(1)}$ is $(1,1)$. The modified step in the CG method will be:
$\left(\Delta x^{(1)}\right)_{C G} \cdot \Delta x^{(0)}=0$ where $\left(\Delta x^{(1)}\right)_{C G}=a \cdot \Delta x^{(0)}+\Delta x^{(1)}$
- Solving for a, we obtain $\left(\Delta x^{(1)}\right)_{C G}=(0,1)$ with $a=-1$.
- When the problem is nearly linear, we can guarantee to find the solution in less than n steps, as the correction vector would have covered the entire space with n orthogonal vectors.
- When V is highly nonlinear, the CG method may not find a minimum in n steps.

Hacker Practice

Use the steepest descent method with line search to solve the nonlinear optimization function V by making $x^{(0)}=(0,0)$ and the local analysis by $\Delta x_{i}=10^{-4} \cdot x_{i}$ perturbation.

$$
\begin{gathered}
V=\left(3 x_{1}^{2}+x_{2}-4\right)^{2}+\left(x_{1}^{2}-3 x_{2}+2\right)^{2} \\
\Delta \vec{x}^{(k)}=-t \nabla V\left(\vec{x}^{(k)}\right)=-t \frac{V\left(x_{1}, x_{2}, \ldots, x_{i}+\Delta x_{i}, \ldots, x_{n}\right)-V\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\Delta x_{i}}
\end{gathered}
$$

Report $\left\|x^{(k)}\right\|_{2},\left\|\Delta x^{(k)}\right\|_{2}, t, V\left(x^{(k)}\right)$.
Can you observe the quadratic convergence?

We know there are two local minima where $V=0$ at $(1,1)$ and $(-1,1)$. How will you change the initial guess to get both?

