ECE 4960
 Spring 2017

Lecture 13

Nonlinear Equations and Optimization: The Newton-Raphson Method

Edwin C. Kan
School of Electrical and Computer Engineering
Cornell University

Finding the Root of 1D Nonlinear Equation

- For a problem of $y=f(x)=0$, we can find the "root" by using the slope to direct the search of $f(x)=0$.
- In addition to using the sign at the present solution to know which section to continue search in bisection, we evaluate the slope J to make predictions about what the next guessed solution is.
- If $f(x)$ and $f^{\prime}(x)$ are both positive, we know that we should decrease x by the amount of $f(x) / f^{\prime}(x)$ for the next solution. We should achieve the solution in this step if $f(x)$ is close to be linear.

Slope-Based Iterative Methods

- Good news: if we are close to the solution (i.e., Δx is small), all continuous equations will be close to linear, as can be seen from the Taylor series: $f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \Delta x+\mathrm{O}\left(\Delta x^{2}\right)$.
- Bad news: for a highly nonlinear problem, we can "overshoot" the correction to bring it to a region with very large error. e^{x} is not "convergent" for $x \rightarrow \infty ; \log (x)$ not convergent for $x \rightarrow 0$.

Convergence in Iterative Methods

- We make an initial guess of $x^{(0)}$, and evaluate $\Delta x^{(0)}$ by $\mathrm{f}\left(\mathrm{x}^{(0)}\right)$ for $x^{(1)}$ $=x^{(0)}+\Delta x^{(0)}$, and the process goes on until the absolute residue approaches 0 :

$$
\lim _{k \rightarrow \infty} f\left(x^{(k)}\right) \rightarrow 0
$$

- The relative residue will also approach 0 at the same time:

$$
\lim _{k \rightarrow \infty} \Delta x^{(k)} \rightarrow 0
$$

- For multi-variate cases:

$$
\begin{aligned}
& \lim _{k \rightarrow \infty}\left\|\vec{f}\left(\vec{x}^{(k)}\right)\right\|_{2} \rightarrow 0 \\
& \lim _{k \rightarrow \infty} \frac{\left\|\Delta \vec{x}^{(k)}\right\|_{2}}{\left\|\vec{x}^{(k)}\right\|_{2}} \rightarrow 0 \quad \text { Self normalized! }
\end{aligned}
$$

Linear Convergence of Bisection

- For example, $f(x)=x-\cos (x)$, where we know there is a solution in $(0, \pi / 2)$, but we also know that this transcendental equation does not have closed-form solution and have to usean iterative scheme.
- We can use the bisection method in 1D to search the region of $(0$, $\pi / 2$), which will be sufficiently efficient, and k digits of precision will need $k \cdot \log _{2} 10$ steps of search. This is called "linear convergence" (it is actually exponential, but the improvement is proportional to $\exp (\Delta x)$ instead of $\left.\exp \left(\Delta x^{2}\right)\right)$.

The Newton Raphson Method

1. Set up the variables and evaluation of $f(x)$ for solving x that satisfis the nonlinear equation $f(x)=0$
2. Make an initial guess $x^{(k)}$, where $k=0$ initially Notice that this is a difficult choice and has dominant influence on the convergence behavior.
3. Evaluate $f\left(x^{(k)}\right)$ and its slope $f^{\prime}\left(x^{(k)}\right)$ or the Jacobian matrix J for the multi-variate case. Calculate the update vector:
$\Delta x^{(k)}=-f\left(x^{(k)}\right) / f^{\prime}\left(x^{(k)}\right)$ or $\quad \Delta \vec{x}^{(k)} \cong-\left[J\left(\vec{x}^{(k)}\right)\right]^{-1} \cdot \vec{f}\left(\vec{x}^{(k)}\right)$
4. Evaluate the norm of $\left\|\Delta x^{(k)}\right\|_{2}$ and $\left\|f\left(x^{(k)}\right)\right\|_{2}$. Stop if $\left\|\Delta x^{(k)}\right\|_{2}$ or $\left\|f\left(x^{(k)}\right)\right\|_{2}<$ tolerance (often set between 10^{-7} to 10^{-9}).
5. Update $x^{(k+1)}=x^{(k)}+\Delta x^{(k)}, k++$, and return to Step 3 to iterate.

1D Newton-Raphson Method Example

- $f(x)=x-\cos x$; Initial guess: $x^{(0)}=0$.
- $f^{\prime}(x)=1+\sin x$;
- $\Delta x^{(k)}=-\left[f^{\prime}\left(x^{(k)}\right)\right]^{-1} f\left(x^{(k)}\right)=-\frac{x^{(k)}-\cos x^{(k)}}{1+\sin x^{(k)}}$
- $x^{(0)}=0 ; \Delta x^{(0)}=1$.
- No line search use. If we do use, we will search $\Delta x^{(0)}=2,1,0.5$, $0.25,0.125$ to see which one gives the smallest $f\left(x^{(1)}\right)$.
- $x^{(1)}=1 ; \Delta x^{(1)}=-0.24$.
- $x^{(2)}=0.76 ; \Delta x^{(2)}=\ldots$.

Isaac Newton 1643-1726

Joseph Raphson 1648-1715

Quadratic Convergence of Newton Method

Step size or residual	Linear convergence	Quadratic convergence				
$\frac{\left\\|\Delta x^{(k)}\right\\|}{x^{(k)}}$ or $\left\\|f\left(x^{(k)}\right)\right\\|$	0.1	0.1				
$\frac{\left\\|\Delta x^{(k+1)}\right\\|}{x^{(k+1)}}$ or $\left\\|f\left(x^{(k+1)}\right)\right\\|$	0.01	0.01				
$\frac{\left\\|\Delta x^{(k+2)}\right\\|}{x^{(k+2)}}$ or $\left\\|f\left(x^{(k+2)}\right)\right\\|$	10^{-3}	10^{-4}				
$\frac{\left\\|\Delta x^{(k+3)}\right\\|}{x^{(k+3)}}$ or $\left\\|f\left(x^{(k+3)}\right)\right\\|$	10^{-4}	10^{-8}				
$\frac{\left\\|\Delta x^{(k+4)}\right\\|}{x^{(k+4)}}$ or $\left\\|f\left(x^{(k+4)}\right)\right\\|$	10^{-5}	10^{-16}				

Hacker Practice

Use the Newton method to solve the following nonlinear equation:

$$
\begin{gathered}
f(x)=e^{100 x}-1=0 \\
\Delta x^{(k)}=-\left[f^{\prime}\left(x^{(k)}\right)\right]^{-1} f\left(x^{(k)}\right)
\end{gathered}
$$

Report $x^{(k)}, \Delta x^{(k)}, f\left(x^{(k)}\right)$.
Make $x^{(0)}=1$, and then recompute using $x^{(0)}=10$. When do you observe quadratic convergence?

Multi-Variate Newton's Method

$\bar{f}(\bar{x}+\Delta \bar{x})-\bar{f}(\bar{x})=[J(\bar{x})] \cdot \Delta \vec{x}+O\left(\|\Delta x\|^{2}\right) \quad J:$ Jacobian matrix
$[J(\bar{x})] \cdot \Delta \bar{x} \cong-\bar{f}(\bar{x})$

$$
\Delta \bar{x} \cong-[J(\bar{x})]^{-1} \cdot \bar{f}(\bar{x})
$$

Newton iteration

Multi-Variate Newton's Method Example

$f_{1}: 3 x_{1}^{2}+x_{2}-4=0$
$f_{2}: x_{1}^{2}-3 x_{2}+2=0$
$J=\left[\begin{array}{ll}\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}\end{array}\right]=\left[\begin{array}{cc}6 x_{1} & 1 \\ 2 x_{1} & -3\end{array}\right]$
Nonlinear to x_{1}; linear to x_{2}.
Two solutions at $(1,1)$ and $(-1,1)$.
$\vec{x}^{(0)}=\left[\begin{array}{l}1 \\ 0\end{array}\right] ; \quad \Delta \vec{x}^{(0)}=-\left[\begin{array}{cc}6 & 1 \\ 2 & -3\end{array}\right]^{-1}\left[\begin{array}{c}-1 \\ 3\end{array}\right]=\frac{1}{20}\left[\begin{array}{cc}-3 & -1 \\ -2 & 6\end{array}\right]\left[\begin{array}{c}-1 \\ 3\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
$\vec{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] ; \quad \Delta \vec{x}^{(1)}=-\left[\begin{array}{cc}6 & 1 \\ 2 & -3\end{array}\right]^{-1}\left[\begin{array}{l}0 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
Converged!

Influence of Initial Guess

$$
\begin{gathered}
f_{1}: \begin{array}{l}
3 x_{1}^{2}+x_{2}-4=0 \\
f_{2}: \\
x_{1}^{2}-3 x_{2}+2=0
\end{array} \\
x^{(0)}=\left[\begin{array}{l}
2 \\
0
\end{array}\right] ; \quad \Delta x^{(0)}=-\left[\begin{array}{cc}
12 & 1 \\
4 & -3
\end{array}\right]^{-1}\left[\begin{array}{l}
8 \\
6
\end{array}\right]=\frac{1}{40}\left[\begin{array}{cc}
-3 & -1 \\
-4 & 12
\end{array}\right]\left[\begin{array}{c}
8 \\
6
\end{array}\right]=\left[\begin{array}{c}
-0.75 \\
1
\end{array}\right] \\
x^{(1)}=\left[\begin{array}{c}
1.25 \\
1
\end{array}\right] ; \quad \Delta x^{(1)}=\ldots
\end{gathered} \begin{aligned}
& x_{2} \text { correct in the the firionst step and } x_{1} ; \text { linear to } x_{2} . \\
& \text { needs more iterations }
\end{aligned}
$$

Line Search in Newton's Method

- Newton's method will converge only in the proximity of the solution: basin of attraction.

1. $\|\Delta x\|$ is sufficiently small.
2. $f(x+\Delta x)$ is close to zero!
3. Δx is NOT zero (or else we cannot make any improvement).
4. J^{-1} will not stretch the f vector by much, i.e., J^{-1} is not ill-conditioned.

- Line search: $\|\vec{f}(\vec{x}+t \Delta \vec{x})\| \quad$ is minimum for all scarlar t
- Example: Bisection search for t
- Δx can be zero at the deflection point!

Basin of Attraction

Hacker Practice

Use the Newton method with line search to solve the same nonlinear equation by making $x^{(0)}=10$.

$$
\begin{gathered}
f(x)=e^{100 x}-1=0 \\
\Delta x^{(k)}=-\left[f^{\prime}\left(x^{(k)}\right)\right]^{-1} f\left(x^{(k)}\right)
\end{gathered}
$$

Report $x^{(k)}, \Delta x^{(k)}, f\left(x^{(k)}\right)$.
What is the change in the beginning and end of the convergence behavior?

