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Finding the Root of 1D Nonlinear Equation

• For a problem of y = f(x) = 0, we can find the “root” by using the 

slope to direct the search of f(x) = 0. 

• In addition to using the sign at the present solution to know which 

section to continue search in bisection, we evaluate the slope J to 

make predictions about what the next guessed solution is.  

• If f(x) and f’(x) are both positive, we know that we should decrease 

x by the amount of f(x)/f’(x) for the next solution.  We should 

achieve the solution in this step if f(x) is close to be linear.  
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Slope-Based Iterative Methods

• Good news: if we are close to the solution (i.e., x is small), all 

continuous equations will be close to linear, as can be seen from the 

Taylor series: f(x) = f(x0) + f’(x0)x + O(x2).  

• Bad news: for a highly nonlinear problem, we can “overshoot” the 

correction to bring it to a region with very large error. ex is not 

“convergent” for x; log(x) not convergent for x 0.
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Convergence in Iterative Methods

• We make an initial guess of x(0), and evaluate x(0) by f(x(0)) for x(1)

= x(0) + x(0), and the process goes on until the absolute residue 

approaches 0:  

• The relative residue will also approach 0 at the same time: 

• For multi-variate cases: 
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Self normalized!



Linear Convergence of Bisection

• For example, f(x) = x – cos(x), where we know there is a solution 

in (0, /2), but we also know that this transcendental equation does 

not have closed-form solution and have to usean iterative scheme.  

• We can use the bisection method in 1D to search the region of  (0, 

/2), which will be sufficiently efficient, and k digits of precision 

will need klog210 steps of search.  This is called “linear 

convergence” (it is actually exponential, but the improvement is 

proportional to exp(x) instead of exp(x2)).
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The Newton Raphson Method

1. Set up the variables and evaluation of f(x) for solving x that satisfis

the nonlinear equation f(x) = 0

2. Make an initial guess x(k), where k = 0 initially  Notice that this is 

a difficult choice and has dominant influence on the convergence 

behavior.  

3. Evaluate f(x(k)) and its slope f’(x(k)) or the Jacobian matrix J for the 

multi-variate case.  Calculate the update vector:                         

x(k) = –f(x(k))/f’(x(k)) or 

4. Evaluate the norm of ||x(k)||2 and ||f(x(k))||2.  Stop if ||x(k)||2 or 

||f(x(k))||2 < tolerance (often set between 10-7 to 10-9).

5. Update x(k+1) = x(k) + x(k), k++, and return to Step 3 to iterate.
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1D Newton-Raphson Method Example

• f(x) = x – cosx; Initial guess: x(0) = 0.  

• f’(x) = 1 + sinx; 

•

• x(0) = 0; x(0) = 1. 

• No line search use.  If we do use, we will search x(0) = 2, 1, 0.5, 

0.25, 0.125 to see which one gives the smallest f(x(1)).

• x(1) = 1; x(1) = 0.24.

• x(2) = 0.76; x(2) = ….
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Isaac Newton
1643 - 1726

Joseph Raphson
1648 - 1715
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Quadratic Convergence of Newton Method

Step size or residual Linear convergence Quadratic convergence

or 0.1 0.1

or 0.01 0.01

or 10-3 10-4

or 10-4 10-8

or 10-5 10-16
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Hacker Practice

Use the Newton method to solve the following nonlinear equation:

f(x) = e100x – 1 = 0

Report x(k), x(k), f(x(k)).

Make x(0) = 1, and then recompute using x(0) = 10.  When do you 

observe quadratic convergence?
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Multi-Variate Newton’s Method
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1

J: Jacobian matrix

Newton iteration



Multi-Variate Newton’s Method Example

023:

043:

2

2

12

2

2

11





xxf

xxf Nonlinear to x1; linear to x2.

Two solutions at (1, 1) and (1, 1).
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Converged!
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Influence of Initial Guess

Nonlinear to x1; linear to x2.

Two solutions at (1, 1) and (1, 1).

x2 correct in the first step and x1

needs more iterations
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Line Search in Newton’s Method

• Newton’s method will converge only in the proximity of the 

solution: basin of attraction.

1. ||x|| is sufficiently small.

2. f(x + x) is close to zero!

3. x is NOT zero (or else we cannot make any improvement).

4. J-1 will not stretch the f vector by much, i.e., J-1 is not ill-conditioned.

• Line search:

• Example: Bisection search for t

• x can be zero at the deflection point!

Basin of Attraction
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Hacker Practice

Use the Newton method with line search to solve the same nonlinear 

equation by making x(0) = 10. 

f(x) = e100x – 1 = 0

Report x(k), x(k), f(x(k)).

What is the change in the beginning and end of the convergence 

behavior?
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