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Solving Nonlinear System of Equations

• Most often we have the same number of variables and equations, so 

that at least one solution exists (aka, not over or under specified).

• The system can be seen as a residual vector f and a solution vector 

x, both of rank n.

or in vector form:
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The Jacobian Matrix

• We are often interested in the direction how changes in x (the 

solution or the state variables) affect changes in f (the residual 

vector or the physical laws).

or: 
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• In most physical representations, J will be 

of the full rank n.

Carl Gustav Jacob Jacobi

1804 - 1851



Bisection Search for Small n

• When n is small (ex. 1 – 5), we can use the bisection method to 

search for the solution of nonlinear f.

• n = 2: quadtree; n = 3: octtree

n = 1 bisection n = 2 quadtree n = 3 octtree



Hacker Practice

Use the bisection method to solve the following nonlinear equation:

f(x) = ex – 1 = 0

For the initial search x  [–10, 10]

For a bit more challenges, use the quad tree to solve (without variable 

substitution):

f1(x, y) = ex – ey = 0; 

f2(x, y) = ex + ey = 2;

For the initial search x  [–10, 10]; y  [–10, 10]



Optimization by Objective Functions

• Finding the optimization of a scalar objective function V(x1, x2, 

…xn) can be defined by the local Taylor expansion with respect to 

the vector x as:  

• where the gradient function            and the Hessian matrix [H] are 

defined by:
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or in vector form:  
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Hessian Matrix

• Multiple objective functions are often put together by the 

Langrangian multipliers:

or:
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Ludwig Otto Hesse

1811 – 1874 

Joseph-Louis Lagrange

1736 – 1813 



Minimization of V(x1, x2, …xn)

• R is the range of the local minimum.

• Global minimum when R 

• When [H] is positive definite, V(x1, x2, …xn) has a local minimum

• When [H] is negative definite, V(x1, x2, …xn) has a local maximum

Rx 
    xVxxV




  0 xV


    0 xHx
t 



Equivalency Between 

Optimization to Nonlinear Solution

• Optimization of the scalar objective function V(x1, x2, …xn) to be 

finding the roots of 

• The root finding of the nonlinear equation                 can be viewed 

as minimization of

• All of the derivatives defined require the function to be continuous 

and smooth, which we will mention the exception explicitly if we 

have to deal with discontinuities.

• If the derivatives of f(x) are well defined for all orders, we call f(x)

is C-.
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Evaluation of f(x), V(x), [J] and [H]

• When          and V(x1, x2, …xn) cannot be expressed in analytical 

forms but can be evaluated with given (x1, x2, …xn), the root finding 

and the optimization problems have the “black boxes” [J] and [H].

• When we are able to evaluate [J] and [H] in explicit forms, we 

will prefer the “white-box method”, as it is often more efficient and 

accurate to evaluate.

• In physical problems based on physical laws such as fluid 

dynamics where turbulence can be the physical outcome, [J] and 

[H] have to be evaluated with specific discretization as a white box 

to be even stable (such as upwinding), where the black box will 

need specific ways of computation.

 xf




Uses of [J] and [H]

• [J] and [H] are often large (a matrix of rank n)

• But [J] and [H] are often sparse matrices, especially when they are 

derived from physical problems.  The sparsity comes from the 

nearest neighbors, or the finite connectivity in circuits, or the finite 

number of coupling variables in social science.  

• This is often the best we can do, as other methods are not stable or 

even more computationally expensive (such as the bisection 

method).  

• When we use “simpler” or “computationally cheaper” search 

methods, [J] and [H] can serve as sound theoretical base to know 

how good our present approximate method is.

• Find local gradient information during solution or optimization: 

– “small signal” analysis in circuits 

– “margin analysis” in economics.


