
ECE  4960

Spring 2017

Lecture 11

Matrix Iterative Methods

Edwin C. Kan

School of Electrical and Computer Engineering

Cornell University



Iterative Matrix Solvers

• For VERY large problems where any amount of fill-in cannot be 

tolerated, we will NEED to use iterative solvers. 

• For many circuit simulation and finite-element based simulation, 

direct solvers are more reliable, and often faster due to the 

symbolic LU factorization executed only once.

• For Ax = b, we can find an initial guess x(0), a T matrix and a 

constant C vector that the following operation can be performed

CTxx kk   )1()(

1
)1(

)(






k

k

Axb

Axb

Residual vector at the k-th

iteration: b – Ax(k)

Convergence criterion



Jacobi Iteration Example for Choice of T
















































































15

11

25

6

8130

11012

31111

02110

1583

11102

25311

6210

4

3

2

1

432

4321

4321

321

x

x

x

x

xxx

xxxx

xxxx

xxx











































0
8

1

8

3
0

10

1
0

10

1

5

1
11

3

11

1
0

11

1

0
5

1

10

1
0

8

15

8

1

8

3

10

11

10

1

10

1

5

1

11

25

11

3

11

1

11

1

5

3

5

1

10

1

324

4213

4312

321

T

xxx

xxxx

xxxx

xxx

Column pivoting and diagonal conditioning



Jacobi and Gauss-Seidel Iterative Solvers

• Decomposing A into D – L – U where D is the diagonal of A, –L is 

the lower triangular part of A (without diagonal) and –U is the 

upper triangular part of A (without diagonal)

Jacobi iterative method

    bxULDxbxULD 

    bDxULDxbDxULDx kk 1)1(1)(11  

Gauss-Seidel iterative method

    bLDUxLDx kk 1)1(1)( 


  1
1




ULDConvergence:



Hacker Practice

Use the Jacobi iterations to solve the same problem below.

Use D-1b as your initial guess and ||x||2 < 10-7 as the convergence 

criteria.  Observe how many iterations are needed for convergence and 

what precision has been achieved against the direct solver in your 

previous hacker practice by checking the evolution of the residual 

vector: ||b – Ax(k)||2.  

Now check the first and infinite norms of ||D-1(L+U)||.  Which one 

gives a better indication of the convergence property?





































































1

2

3

4

5

1200011

010000

90870

00654

30021

5

4

3

2

1

x

x

x

x

x



Successive Over Relaxation (SOR)

• The objective of the iterative solver is to reduce ||b – Ax||2, which 

gives an idea how far we are away from convergence.

SOR method

)()( kk Axbr 

 11)1()(   kkk rDxx 

•  < 1: under-relaxation.

•  > 1 (e.x.,  =  2 to 10): successive over-relaxation (SOR)



Diagonal Matrix Conditioning

• When the matrix cannot be made into diagonal dominant, in 

iterative methods, we can choose to solve:

  bxIA 

• In the beginning of Gauss-Seidel or SOR, we can choose a large 

to give diagonal dominance, and then gradually decrease  to 0.



Hacker Practice

Use the SOR iterations  to solve the problem below with  = 2.

Use D-1b as your initial guess and as the convergence criteria.  

Observe how many iterations are needed for convergence and what 

precision has been achieved against the direct solver in your previous 

hacker practices. Print your iterations in the following format:

Iter. k x1
(k) x1

(k+1) ||x||2 ||r(k)||2





































































1

2

3

4

5

1200011

010000

90870

00654

30021

5

4

3

2

1

x

x

x

x

x



Thoughts on Iterative Matrix Solvers

• These iterative methods can have their specific implementations to 

make the computation faster for different platforms. 

• On a serial platform, during x(k) calculations, we can use as many 

already known elements in x(k), then the Jacobi iteration will 

become the Gauss-Seidel iteration.  

• This does increase the data dependence within the present iteration, 

and may not be the most efficient way for vectorized- or parallel-

computing platforms.  

• For very large matrix computation, the speed of the iterative solver 

is often specific to the problem and to the platform.  



How Does the Iterative Solver Converge?

• Correct answer: Considering x(k-1) has to converge to x(k), the 

spectral radius (i.e., the magnitude of the largest eigenvalue) of the 

iterative matrix is < 1. 

– For Jacobi iteration: ||D-1(L+U)|| < 1

– For Gauss Seidel iteration: ||(D – L)-1U|| < 1

– For SOR: ||1 - D-1A|| < 1

• Practical answer: Choose diagonally dominant pivoting by row 

and column permutation before applying the iterative method (this 

is in general called preconditioning).  

• The preconditioning method for iterative solvers can be life or 

death just like choice of pivoting in direct solvers, but it is out of 

the scope of this class.


