ECE 4960 Spring 2017

Lecture 10

Matrix Pivoting

Edwin C. Kan
School of Electrical and Computer Engineering
Cornell University

Example for Importance of Pivoting

Use the round-off rule to keep only 4 digits of precision for the following problem by Gaussian elimination from the first row:

$$
\left\{\begin{array}{c}
0.003000 x_{1}+59.14 x_{2}=59.17 \\
5.291 x_{1}-6.130 x_{2}=46.78
\end{array}\right.
$$

$x_{1}=-10.00$ and $x_{2}=1.001$. Substitute back to know accuracy!

$$
\left\{\begin{array}{c}
59.14 x_{2}+0.003000 x_{1}=59.17 \\
-6.130 x_{2}+5.291 x_{1}=46.78
\end{array}\right.
$$

$x_{1}=10.00$ and $x_{2}=1.000$. Substitute back to know accuracy!
Only column permutation is done!!!!

Pivoting for Precision Preservation

- Appropriate pivoting can be guided by highest precision preservation or by minimal fill-ins for the sparse matrix.
- These two criteria can be in conflict: the pivoting choice for precision preservation and the pivoting for minimal fill-in can cause severe degradation for each other!
- If only column vector permutations are considered when we choose the pivot element, it is called partial or column pivoting.
- If we consider both column and row permutations, it is then called total, full or maximum pivoting.
- The search of the best pivoting for precision preservation is an $\mathrm{O}\left(n^{3}\right)$ operation, similar to the symbolic LU factorization for minimal fill-in, but we need to know the numerical elements of each element to choose pivoting for precision preservation.

Pivot-on-the-Fly

- To resolve the choices between minimum fill-in and maximum pivoting: pivot-on-the-fly
- A pivoting tolerance is set to invoke alternative pivoting choices from minimal fill-ins and take sacrifice of the increase in non-zero fill-in.
- Pivot-on-the-fly is expensive too, as choosing the pivot and changing the computing order in LU decomposition are $\mathrm{O}\left(n^{3}\right)$.
- For many practical matrices, we do not need maximum pivoting to control the round-off errors, such as when the matrix is diagonally dominant.

$$
\left|a_{i i}\right|>\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right| \quad \text { for all } i
$$

Practical Heuristics for Pivot-on-the-Fly

$$
\left|a_{i i}\right|>S_{t h} \cdot \sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right| \quad \text { for all } i
$$

- $S_{t h}$ is the scaling threshold for tolerance between $10^{-1}-10^{-5}$.
- As the minimal fill-in algorithm is performed at the symbolic step when the value of $a_{i j}$ is not yet known, the pivot-on-the-fly algorithm will be triggered to alter the LU factorization operation with different pivoting choices only when Eq. (13) is violated.
- Set $S_{t h}$ to 10^{-1} when the memory and computational time constraints are not stringent constraints.
- Set $S_{t h}$ to 10^{-5} when we hope to keep most of the minimal fill-in pivoting choices to save memory and computational time.

Vector and Matrix Norms

- To estimate the conditioning of vectors and matrices, we often use "norms" to sum up the contribution from each element.
- Any "norm" needs to satisfy the three criteria below:

1. $\|x\|$ is positive, and only equal to zero when all $x_{i}=0$.
2. $\|a x\|=|a| \cdot\|x\|$ where a is any complex scalar.
3. $\|x+y\| \leq\|x\|+\|y\|$ (this is also referred as the "triangular rule")

- Popular vector norms:

1. First norm: $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
2. Second: $\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$
3. Infinite: $\|x\|_{\infty}=\max _{i=1, n}\left|x_{i}\right|$

Matrix Norms

- Frobenius matrix norms: $\|A\|_{F_{2}}=\sqrt{\sum_{i, j=1}^{n} a_{i j}^{2}}$
- Frobenius norm does not indicate the matrix properties in a useful manner. A better and more general definition is to view A as a transformation for the vector x that it applies to

$$
\|A\|=\max _{\forall x \neq 0} \frac{\|A x\|}{\|x\|}
$$

$$
\begin{aligned}
& \|A\|_{1} \leq \max _{k} \sum_{j}\left|a_{j k}\right| \\
& \|A\|_{\infty} \leq \max _{j} \sum_{k}\left|a_{j k}\right|
\end{aligned}
$$

Maximum column vector sum

Maximum row vector sum

Hacker Practice

Calculate the upper bounds of $\|A\|_{1}$ and $\|A\|_{\infty}$ in the full-matrix and sparse-matrix formats. Preserve the function, as we will use the results later.

$$
A=\left(\begin{array}{ccccc}
1 & 2 & 0 & 0 & 3 \\
4 & 5 & 6 & 0 & 0 \\
0 & 7 & 8 & 0 & 9 \\
0 & 0 & 0 & 10 & 0 \\
11 & 0 & 0 & 0 & 12
\end{array}\right)
$$

Matrix and Its Inverse

- Matrix conditioning: how perturbation in matrix elements of $a_{i j}$ will affect the solution of $A x=b$.
- When A^{-I} exists and $A A^{-I}=I$, but it is often hard to compute A^{-I} directly, which is not sparse even if A has high sparsity.
- Cramer's rule for matrix inverse:

$$
\begin{aligned}
& A_{i j}^{-1}=\frac{1}{\left(\operatorname{det}\left(s u b A_{i j}\right)\right) \quad s u b A_{i j} \text { is the matrix reduced from } A \text { by }{ }^{2}(A)} \\
& \text { deleting the } i \text {-th row and } j \text {-th column }
\end{aligned}
$$

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \Rightarrow \quad A^{-1}=\frac{1}{(a d-b c)}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Matrix Conditioning

- Taking a delta of $A x=b$.

$$
\begin{gathered}
\Delta A \cdot x+A \Delta x=0 \\
\|\Delta x\| \leq\left\|A^{-1}\right\| \cdot\|\Delta A\| \cdot\|x\| \\
\frac{\|\Delta x\|}{\|x\|} \leq\left\|A^{-1}\right\| \cdot\|A\| \cdot \frac{\|\Delta A\|}{\|A\|}
\end{gathered}
$$

- Matrix conditioning of $A: \quad \kappa_{A} \equiv\left\|A^{-1}\right\| \cdot\|A\|$
- However, it is usually too difficult to know $\left\|A^{-1}\right\|$!
- So, often we just use D^{-l} where $D=\operatorname{diag}(A)$.

Column Pivoting and Diagonal Conditioning Example

- For the 4-digit precision, the previous ill-conditioned problem :

$$
\left\{\begin{array}{c}
x_{1}+19710 x_{2}=19720 \\
-0.8631 x_{1}+x_{2}=7.631 \\
\square
\end{array}\right.
$$

Column pivoting and permutation

$$
\begin{aligned}
& {\left[\begin{array}{cc}
19710 & 1 \\
1 & -0.8631
\end{array}\right] \cdot\left[\begin{array}{l}
x_{2} \\
x_{1}
\end{array}\right]=\left[\begin{array}{c}
19720 \\
7.631
\end{array}\right]} \\
& {\left[\begin{array}{cc}
1 & 5.074 \times 10^{-5} \\
-11.59 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x_{2} \\
x_{1}
\end{array}\right]=\left[\begin{array}{c}
1.001 \\
-8.841
\end{array}\right]}
\end{aligned}
$$

Matrix conditioning by diagonal normalization

