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Example for Importance of Pivoting

Use the round-off rule to keep only 4 digits of precision for the 

following problem by Gaussian elimination from the first row:
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x1 = –10.00 and x2 = 1.001.  Substitute back to know accuracy!
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x1 = 10.00 and x2 = 1.000.  Substitute back to know accuracy!

Only column permutation is done!!!!



Pivoting for Precision Preservation

• Appropriate pivoting can be guided by highest precision 

preservation or by minimal fill-ins for the sparse matrix.  

• These two criteria can be in conflict: the pivoting choice for 

precision preservation and the pivoting for minimal fill-in can 

cause severe degradation for each other!

• If only column vector permutations are considered when we choose 

the pivot element, it is called partial or column pivoting.  

• If we consider both column and row permutations, it is then called 

total, full or maximum pivoting.  

• The search of the best pivoting for precision preservation is an 

O(n3) operation, similar to the symbolic LU factorization for 

minimal fill-in, but we need to know the numerical elements of 

each element to choose pivoting for precision preservation.



Pivot-on-the-Fly

• To resolve the choices between minimum fill-in and maximum 

pivoting: pivot-on-the-fly

• A pivoting tolerance is set to invoke alternative pivoting choices 

from minimal fill-ins and take sacrifice of the increase in non-zero 

fill-in.  

• Pivot-on-the-fly is expensive too, as choosing the pivot and 

changing the computing order in LU decomposition are O(n3).  

• For many practical matrices, we do not need maximum pivoting to 

control the round-off errors, such as when the matrix is diagonally 

dominant.
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Practical Heuristics for Pivot-on-the-Fly

• Sth is the scaling threshold for tolerance between 10-1 – 10-5.   

• As the minimal fill-in algorithm is performed at the symbolic step 

when the value of aij is not yet known, the pivot-on-the-fly 

algorithm will be triggered to alter the LU factorization operation 

with different pivoting choices only when Eq. (13) is violated.  

– Set Sth to 10-1 when the memory and computational time constraints are not 

stringent constraints.

– Set Sth to 10-5 when we hope to keep most of the minimal fill-in pivoting 

choices to save memory and computational time.
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Vector and Matrix Norms

• To estimate the conditioning of vectors and matrices, we often use 

“norms” to sum up the contribution from each element.   

• Any “norm” needs to satisfy the three criteria below:

1. is positive, and only equal to zero when all xi = 0.

2. where a is any complex scalar.

3. (this is also referred as the “triangular rule”)

• Popular vector norms:

1. First norm:

2. Second:

3. Infinite:

x

xaax 

yxyx 





n

i

ixx
1

1





n

i

ixx
1

2

2

i
ni

xx
,1

max






Matrix Norms

• Frobenius matrix norms:    

• Frobenius norm does not indicate the matrix properties in a useful 

manner.  A better and more general definition is to view A as a 

transformation for the vector x that it applies to
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Hacker Practice

Calculate the upper bounds of ||A||1 and ||A|| in the full-matrix and 

sparse-matrix formats.  Preserve the function, as we will use the 

results later.
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Matrix and Its Inverse

• Matrix conditioning: how perturbation in matrix elements of aij will 

affect the solution of Ax = b.  

• When A-1 exists and AA-1 = I, but it is often hard to compute A-1

directly, which is  not sparse even if A has high sparsity.

• Cramer’s rule for matrix inverse:
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Matrix Conditioning

• Taking a delta of Ax = b.  
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• However, it is usually too difficult to know ||A-1||!

• So, often we just use D-1 where D = diag(A).



Column Pivoting and Diagonal 

Conditioning Example

• For the 4-digit precision, the previous ill-conditioned problem :
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