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Gaussian Elimination vs. LU Decomposition
Gaussian elimination LU decomposition

4x1 + 4x2 + 2x3 = 2

4x1 + 5x2 + 3x3 = 3

2x1 + 3x2 + 3x3 = 5

Eliminate x1 from 2nd and 3rd rows 

(a11 is called the pivot):

4x1 + 4x2 + 2x3 = 2

x2 +    x3 = 1

x2 +   2x3 = 4

Eliminate x2 from 3rd row

(a22 is chosen as the pivot):

4x1 + 4x2 + 2x3 = 2

x2 +    x3 = 1

x3 = 3
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M2M1Ax = M2M1b; A = LU

U=M2M1A is an upper triangular matrix

M1, M2 and L = M1
-1M2

-1 are lower triangular matrices



Triangular Matrix Properties

• All upper U and lower L triangular matrices with unit diagonals

have product and inversion rules, 

– Product of upper triangular matrices will be an upper triangular matrix; 

– Inverse of an upper triangular matrix will be an upper triangular matrix.  

• The triangular matrix can be readily solved by backward 

substitution with O(n2) computational cost.



Symbolic LU Factorization

• If we just know the symbolic position of the non-zero elements, we 

can still perform LU factorization, i.e., we will know the structure 

of the Mi and MiMi-1A matrices without their element values.

• The computing sequence and the movement/fill-in of the LU 

factorization will be entirely known.

• Actual element values will affect the results (for sure), and the 

precision (choice of the pivot element, or pivoting)

• In circuit simulation, once the circuit topology is fixed, this sparse 

structure will not change, and all following DC and transient 

simulation can share the first symbolic LU factorization.  

• For finite-difference and finite-element simulation, once the 

gridding and discretization of the geometry are fixed, we can 

perform one symbolic LU factorization and use it to organize 

simulation in all following stages.  



First Objective: Minimal Fill-ins

• The sparse matrix structure can change during the Gaussian 

elimination, or equivalently, LU decomposition.  

• For both memory and computing concerns, we hope to keep these 

“fill-ins” to a minimal by reordering the rows or columns (i.e., row 

or column permutation). 
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Row and Column Permutation

• Row permutation is the change of the order of the objective 

functions, which does not change the property of A except that the 

determinant is multiplied by –1.  

• Row permutation does change the sparse structure significantly 

(but not the total number of nonzero elements) and can affect the 

number of fill-ins for subsequent operations and hence the memory 

usage and total computational time.

• Similarly, column permutation can tidy up the matrix so that the 

pivot (the element chosen to zero out the lower elements in the 

same column) is always on the diagonal.  We just need to keep the 

solution vector indices correspondingly. 



Ax = b Solution from LU Factorization

1. Symbolic LU factorization to determine the order of computing 

for minimal fill-in and best anticipated pivoting (described in the 

next section): O(n3)

2. Numerical calculation of L and U matrices: O(nz), where nz is 

the total number of nonzero elements during the LU factorization.

3. Backward substitution (one for L and one for U) to obtain the 

solution: O(nnz).

A = LU; Ax = b  

LUx = b; 

Ux = L-1b or x = U-1L-1b



LU Factorization Achieves…

• Make Ux = v. We can solve Lv = b and Ux = v by backward 

substitution in O(n2) time.

• L-1 and U-1 are also triangular matrices, and can be readily 

computed IF necessary (they may have a lot of fill-ins, so this is not 

typically done in view of memory usage).

• The eigenvalues of L and U are their respective diagonals (hence 

the spectral radii of L and U, which are the largest magnitude of the 

diagonals, are known).

• The matrix determinant of L and U can be readily determined:
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Choices in LU Factorization

• L and U (n2 + n) have more degree of freedoms than A (n2)  

• Further constraint is needed to obtain specific L and U .

1. L has a unit diagonal: Doolittle LU factorization. 

2. U has a unit diagonal: Crout LU factorization.

3. constrain Lii = Uii : Choleski LU factorization.



Equivalent Criteria for Ax = b 

Solution Existence

• A has a rull rank of n.

• A can be inverted (A-1 exists).

• A is non-singular or non-degenerate.

• A can have successful LU factorization with no zero eigenvalues in 

L and U (precision will be subject to the matrix condition number).

• The matrix determinant is not zero: Det(A)  0.

• The eigenvalues of A are not zero (but they can have the repeated 

nonzero elements), and A can be diagonalized into the Jordon block 

structure..



Hacker Practice

Use the full matrix format and only row permutation (easier to 

implement in a short time, and a good check for your sparse 

matrixlater on), perform the minimal fill-in algorithm for choosing the 

sequence of pivoting to solve:

Use the backward substitution to check your answer.  For an 

interesting process, change your data structure to row-compressed 

format.  However, your choices of pivoting should be the same, and 

your LU matrix identical.
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