
ECE 4960

Spring 2017

Lecture 8

The Wilkinson Principle
(Applied to Debugging of Linear Algebra)

Edwin C. Kan

School of Electrical and Computer Engineering

Cornell University

Different Data Structures or Methods

• In the sparse matrix implementation, we often worry about the

software bugs in indexing, memory storage, etc.

• We can use two different implementations for modular testing!

– Two different data structures

– Two different computational routes

– Two different approximations

– Two different …

• Intuitively, when the two implementations give exactly the same

answer, the probability that both implementations are correct is

very high.

• In this validation, we may NOT need to know the ground truth!

The Wilkinson Principle

• “The computed solution x is the EXACT solution of a nearby

(perturbed) problem.”

• Or paraphrased here: “The computed solution x with incorrect

implementation is the EXACT solution of the wrongly specified

problem”.

• Two implementations by two different data structures, if there are

bugs, will likely NOT give the same EXACT solution!

• Surely, if the common algorithm is wrong, then both

implementations can give the SAME wrong answer, and therefore,

this validation is useful, but incomplete.

Validation by the Wilkinson Principle

• The Wilkinson technique remains critical in software validation

together with other validation method.

• The Wilkinson principle works well for accounting too!

• The Wilkinson principle is probably more famous (and applicable)

in the overall precision testing: When two computation

implementations (no software bug in either) give similar but

different results, each answer can be treated as an exact solution of

the respective perturbed problem.

Example of the Wilkinson Validation

• Implement in the full matrix and in the row-compressed formats.

(1) Row permute:

// Switch row[i] and row[j] for matrix A and vector x

int rowPermute(matrix* A, vec* x, int i, int j);

(2) Row scaling:

// Add a*row[i] to row[j] for matrix A and vector x

int rowScale(matrix* A, vec* x, int i, int j, double a);

(3) Vector product:

// Return the product of Ax = b

int productAx(matrix* A, vec* x, vec* b);

Example of the Wilkinson Validation

• The return integer is often reserved for the indicator of successful

operations, e.x., 0 means no error or exception, 1 means unmatched

rank of A and x, 2 means INF/NINF exception, 3 means NaN

exception, etc.

• If you want to improve the code readability, use local define

statement).

• You can implement the three methods in the full matrix and the

sparse matrix formats and then make element-by-element of the

final results after random order of the three operations!

• You do not have to know the ground truth.

• You can easily automate the check process!

• If your matrix manipulation has software bugs, it is likely that you

can find out in the simple test.

Hacker Practice

Use the row-compressed storage and the full-matrix representations to

implement the vector product:

int productAx(matrix* A, vec* x, vec* b);

// Compute the product of Ax = b

Write a test function to compare the resulting matrix and vector (all

elements) for validation. For the full-matrix representation, feel free to

use built-in utility functions.

























1200011

010000

90870

00654

30021

A

























1

2

3

4

5

x

Other Types of Wilkinson Validation

• We may not have two distinctive data structures that are meaningful

• Two different computational procedures:

– Perform productAx() with x = (1, 1, …,1) and a direct sum for all non-

zero elements

• Two different algorithms or conditioning methods

• Some tests do not cover much at all: Checking Norm(Ax – b) in

productAx() will ONLY check the function implementation of

Norm().

Three Basic Matrix Problems

•  is a scalar (eigenvalues), x, b, and r are vectors, and A is the

matrix of interest.

• Problems (1) and (2) are equivalent.

• Problem (3) contains sufficient information for (1) and (2)

• Problem (3) of the eigenvalues and eigenfunctions characterizes A

fully. If we know (3), for any given b, we can find x quickly.

bAx 

2
bAx Minimization of

rAr 

(1)

(2)

(3)

Decomposition by Eigenvectors

• For the i eigenvalues, if the corresponding eigenvector is ri:

 nrrrR ...21

 RARWe can easily show:



















n



00

0...0

001

where

For solution of Ax = b, we know x can be decomposed to ri:

nnrcrcrcx  ...2211

We know Ari = iri in the eigenvalue problem

  brcrcrcrcrcrcAAx nnnnn   2221112211

Matrix Conditioning in Ax = b (1)

Example 1:



























197

199

9899

99100

y

x
x = y = 1



























197

199

009.9899

99100

y

x
x = –7.91; y = 10

Two lines are nearly degenerate: ill conditioning for intersection

solution!

Matrix Conditioning in Ax = b (2)

Example 2:

1 = 2 = 3 =4 =10

1 =11, 2 = 10+i,

3 = 10 – i, 4 =9























10000

1001000

0100100

0010010

A























 100010

1001000

0100100

0010010

6

A

Hacker Practice

Use your matrix solver for:

for e = 10-2, 10-3, …, 10-9. Print out the value of (x, y) and the second

norm of the residual vector:



























 197

199

01.9899

99100

y

x

e

2
197

199

01.9899

99100


























 y

x

e

