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Different Data Structures or Methods

• In the sparse matrix implementation, we often worry about the 

software bugs in indexing, memory storage, etc.

• We can use two different implementations for modular testing!

– Two different data structures

– Two different computational routes

– Two different approximations

– Two different …

• Intuitively, when the two implementations give exactly the same 

answer, the probability that both implementations are correct is 

very high.

• In this validation, we may NOT need to know the ground truth! 



The Wilkinson Principle

• “The computed solution x is the EXACT solution of a nearby 

(perturbed) problem.”  

• Or paraphrased here: “The computed solution x with incorrect 

implementation is the EXACT solution of the wrongly specified 

problem”.  

• Two implementations by two different data structures, if there are 

bugs, will likely NOT give the same EXACT solution!   

• Surely, if the common algorithm is wrong, then both 

implementations can give the SAME wrong answer, and therefore, 

this validation is useful, but incomplete.  



Validation by the Wilkinson Principle

• The Wilkinson technique remains critical in software validation 

together with other validation method.

• The Wilkinson principle works well for accounting too!  

• The Wilkinson principle is probably more famous (and applicable) 

in the overall precision testing: When two computation 

implementations (no software bug in either) give similar but 

different results, each answer can be treated as an exact solution of 

the respective perturbed problem.  



Example of the Wilkinson Validation

• Implement in the full matrix and in the row-compressed formats. 

(1) Row permute: 

// Switch row[i] and row[j] for matrix A and vector x

int rowPermute(matrix* A, vec* x, int i, int j); 

(2) Row scaling: 

// Add a*row[i] to row[j] for matrix A and vector x

int rowScale(matrix* A, vec* x, int i, int j, double a);

(3) Vector product: 

// Return the product of Ax = b

int productAx(matrix* A, vec* x, vec* b);



Example of the Wilkinson Validation

• The return integer is often reserved for the indicator of successful 

operations, e.x., 0 means no error or exception, 1 means unmatched 

rank of A and x, 2 means INF/NINF exception, 3 means NaN

exception, etc.  

• If you want to improve the code readability, use local define

statement).  

• You can implement the three methods in the full matrix and the 

sparse matrix formats and then make element-by-element of the 

final results after random order of the three operations!  

• You do not have to know the ground truth.  

• You can easily automate the check process!  

• If your matrix manipulation has software bugs, it is likely that you 

can find out in the simple test.



Hacker Practice

Use the row-compressed storage and the full-matrix representations to 

implement the vector product: 

int productAx(matrix* A, vec* x, vec* b); 

// Compute the product of Ax = b

Write a test function to compare the resulting matrix and vector (all 

elements) for validation. For the full-matrix representation, feel free to 

use built-in utility functions.  
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Other Types of Wilkinson Validation

• We may not have two distinctive data structures that are meaningful  

• Two different computational procedures:

– Perform productAx( ) with x = (1, 1, …,1) and a direct sum for all non-

zero elements

• Two different algorithms or conditioning methods

• Some tests do not cover much at all: Checking Norm(Ax – b) in 

productAx( ) will ONLY check the function implementation of  

Norm( ).



Three Basic Matrix Problems

•  is a scalar (eigenvalues), x, b, and r are vectors, and A is the 

matrix of interest.

• Problems (1) and (2) are equivalent.

• Problem (3) contains sufficient information for (1) and (2)

• Problem (3) of the eigenvalues and eigenfunctions characterizes A 

fully.  If we know (3), for any given b, we can find x quickly.
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Decomposition by Eigenvectors

• For the i eigenvalues, if the corresponding eigenvector is ri:

 nrrrR ...21

 RARWe can easily show:
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For solution of Ax = b, we know x can be decomposed to ri:

nnrcrcrcx  ...2211

We know Ari = iri in the eigenvalue problem
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Matrix Conditioning in Ax = b (1)

Example 1:
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Two lines are nearly degenerate: ill conditioning for intersection 

solution!



Matrix Conditioning in Ax = b (2)

Example 2:

1 = 2 = 3 =4 =10

1 =11,  2 = 10+i, 

3 = 10 – i, 4 =9
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Hacker Practice

Use your matrix solver for: 

for e = 10-2, 10-3, …, 10-9.  Print out the value of (x, y) and the second 

norm of the residual vector:
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