
ECE 4960

Spring 2017

Lecture 7

Linear Algebra: Sparse Matrices

Edwin C. Kan

School of Electrical and Computer Engineering

Cornell University

Large Number of Degree of Freedoms and

Independent Variables

• Dow Jones index: 107 variables of companies, funds and bills

– Interdepencies among companies and relation to forecast: nonlinear

• Weather simulation: 100km  100km  10km on 10m grids: 1011

variables

– Navier Stokes fluidic equations: nonlinear

• Microprocessor: Data bus (64 bits) on ALU internal nodes (107)

– Transistor I-V relations: nonlinear

Vectors and Matrices

• Most mathematical and physical problems, after linearization, can

be translated into problems involving vectors and matrices.

• Mapping data bus (64 bits) on ALU internal nodes (107)

– Matrix A will have a dimension [107, 64]

– Modeling the RC branches connected the 107 ALU internal nodes by

Kerchhoff’s laws: Matrix A will have a dimension [107, 107] that transforms

the 107 voltage node vector at t = t0 to the 107 voltage node vector at t = t0 +

t.

• Matrix of rank n will need O(n2) storage and O(n3) operations in

the solution of Ax = b.

• Problems become untreatable for present computers: A of [107, 107]

matrix with every element in double precision: 1015 bytes

(1,000TB) to store every value.

Sparse Matrices

• Most matrices of practical problems are “sparse”, i.e., most of their

elements have zero values.

• For the ALU circuits, if every node has on average 10 elements

connected to it, the matrix storage is just 10n instead of n2.

• If the problem is derived from finite-element or finite-difference of

the partial differential equations, 3D formulation has an average of

7 – 21 elements per node (depending on the number of equations

that need to be solved self consistently).

• Handling sparse matrices efficiently in terms of memory usage and

computation is the heart of many computing problems:

– video games,

– stock market analysis

– engineering simulation

Sparse Matrix Resources

• BLAS (basic linear algebra subprograms): Legacy Fortran and C functions that

are highly optimized for CPU with limited cache space. Although the library had

been created and maintained from the 1960’s, it is still the workhorse for many

scientific simulation softwares. See the web page at http://www.netlib.org/blas/.

• Sparselib++: Production of the National Institute of Standards and Technology.

See the web page at: http://math.nist.gov/sparselib++/.

• Trilinos: A more recent effort with all modern language support. Also very good

software engineering principles. Trilinos is an international collaboration. In

US, it is mostly maintained by the Sandia National Lab. See the web page at:

https://trilinos.org/.

• Matlab??? Not free…

http://www.netlib.org/blas/
http://math.nist.gov/sparselib++/
https://trilinos.org/

Sparse Matrix Representation

• Although OOP should prescribe “methods” or “application

procedural interface (API)” instead of “data structure, most

important consideration of sparse matrices is the efficient memory

handling: understanding data structure is necessary (though hidden

behind API).

• For the most basic operation of Ax = b,

– A is of dimension [m, n]

– x of dimension m

– b of dimension n

• we will only need sparse representation for A. Unless A is severely

degenerate (i.e., rank(A) << min(m, n)), b will not be sparse even

though x is sparse.

• Assume matrices with equal row and column ranks n, unless

otherwise mentioned.

Coordinate Sparse Matrix Storage

• Here rank(A) = n = 5, dim(A) = [5, 5]

• 12 non-zero elements within the 25 matrix elements.

• Row index of 0…4 and column index of 0…4 in C/C++.

























1200011

010000

90870

00654

30021

A

value() 1 2 3 4 5 6 7 8 9 10 11 12

rowInd() 0 0 0 1 1 1 2 2 2 3 4 4

colInd() 0 1 4 0 1 2 1 2 4 4 0 4

Coordinate storage of sparse matrix A

Compressed Row or Column Storage

























1200011

010000

90870

00654

30021

A

value() 1 2 3 4 5 6 7 8 9 10 11 12

rowPtr() 0 3 6 9 10 12

colInd() 0 1 4 0 1 2 1 2 4 4 0 4

Compressed row storage of sparse matrix A

value() 1 4 11 2 5 7 6 8 10 3 9 12

rowInd() 0 1 4 0 1 2 1 2 3 0 2 4

colPtr() 0 3 6 8 9 12

Compressed column storage of sparse matrix A

Coordinate vs. Compressed

• Coordinate storage:

– No assumption of element order: easy add and delete.

• Compressed storage:

– Slightly smaller storage space

– Assume sorted element orders in row or column

– Easy trasversing in multiplication

– Overhead in add and delete

• Many practical problems like circuit simulation have a fixed matrix

topology derived from the circuit topology (aka, the netlist).

– Non-zero elements in the matrix have fixed row and column position, or they

are “symbolic non-zero elements”

– The nonzero element has various different floating-point values during the

computation: “numerical non-zero elements”

Common Sparse Matrix Utility Functions

matrix* createMatrix(n); // intend to create a sparse matrix of rank n,
// but without reserving all storage.
// Memory scheme varies.

void addElement(*matrix, rowInd, colInd, value);
void deleteElement(*matrix, rowInd, colInd);

double retrieveElement(*matrix, rowInd, colInd);

integer rankMatrix(*matrix); // return 5 for above
integer countElementMatrix(*matrix); // return 12 for above

Hacker Practice

.

• Create the sparse matrix A in the row compressed format of Table 2

with three vectors: value[12]; rowPtr[6]; colInd[12].

• Implement the function retrieveElement().

• Use the 5 by 5 printout to verify your program

























1200011

010000

90870

00654

30021

A

value() 1 2 3 4 5 6 7 8 9 10 11 12

rowPtr() 0 3 6 9 10 12

colInd() 0 1 4 0 1 2 1 2 4 4 0 4

Compressed row storage of sparse matrix A

