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Large Number of Degree of Freedoms and 

Independent Variables

• Dow Jones index: 107 variables of companies, funds and bills

– Interdepencies among companies and relation to forecast: nonlinear

• Weather simulation: 100km  100km  10km on 10m grids: 1011

variables

– Navier Stokes fluidic equations: nonlinear

• Microprocessor: Data bus (64 bits) on ALU internal nodes (107)

– Transistor I-V relations: nonlinear



Vectors and Matrices

• Most mathematical and physical problems, after linearization, can 

be translated into problems involving vectors and matrices.

• Mapping data bus (64 bits) on ALU internal nodes (107)

– Matrix A will have a dimension [107, 64]

– Modeling the RC branches connected the 107 ALU internal nodes by 

Kerchhoff’s laws: Matrix A will have a dimension [107, 107] that transforms 

the 107 voltage node vector at t = t0 to the 107 voltage node vector at t = t0 + 

t.

• Matrix of rank n will need O(n2) storage and O(n3) operations in 

the solution of Ax = b.

• Problems become untreatable for present computers: A of [107, 107] 

matrix with every element in double precision: 1015 bytes 

(1,000TB) to store every value.



Sparse Matrices

• Most matrices of practical problems are “sparse”, i.e., most of their 

elements have zero values.

• For the ALU circuits, if every node has on average 10 elements 

connected to it, the matrix storage is just 10n instead of n2.  

• If the problem is derived from finite-element or finite-difference of 

the partial differential equations, 3D formulation has an average of 

7 – 21 elements per node (depending on the number of equations 

that need to be solved self consistently).

• Handling sparse matrices efficiently in terms of memory usage and 

computation is the heart of many computing problems:

– video games, 

– stock market analysis 

– engineering simulation



Sparse Matrix Resources

• BLAS (basic linear algebra subprograms): Legacy Fortran and C functions that 

are highly optimized for CPU with limited cache space.  Although the library had 

been created and maintained from the 1960’s, it is still the workhorse for many 

scientific simulation softwares.  See the web page at http://www.netlib.org/blas/.

• Sparselib++: Production of the National Institute of Standards and Technology.  

See the web page at: http://math.nist.gov/sparselib++/.

• Trilinos: A more recent effort with all modern language support.  Also very good 

software engineering principles.  Trilinos is an international collaboration.  In 

US, it is mostly maintained by the Sandia National Lab.  See the web page at: 

https://trilinos.org/.

• Matlab???  Not free…

http://www.netlib.org/blas/
http://math.nist.gov/sparselib++/
https://trilinos.org/


Sparse Matrix Representation

• Although OOP should prescribe “methods” or “application 

procedural interface (API)” instead of “data structure, most 

important consideration of sparse matrices is the efficient memory 

handling: understanding data structure is necessary (though hidden 

behind API).

• For the most basic operation of Ax = b, 

– A is of dimension [m, n] 

– x of dimension m

– b of dimension n

• we will only need sparse representation for A.  Unless A is severely 

degenerate (i.e., rank(A) << min(m, n)), b will not be sparse even 

though x is sparse.

• Assume matrices with equal row and column ranks n, unless 

otherwise mentioned.



Coordinate Sparse Matrix Storage

• Here rank(A) = n = 5, dim(A) = [5, 5]

• 12 non-zero elements within the 25 matrix elements. 

• Row index of 0…4 and column index of 0…4 in C/C++.
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value( ) 1 2 3 4 5 6 7 8 9 10 11 12

rowInd( ) 0 0 0 1 1 1 2 2 2 3 4 4

colInd( ) 0 1 4 0 1 2 1 2 4 4 0 4

Coordinate storage of sparse matrix A



Compressed Row or Column Storage
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value( ) 1 2 3 4 5 6 7 8 9 10 11 12

rowPtr( ) 0 3 6 9 10 12

colInd( ) 0 1 4 0 1 2 1 2 4 4 0 4

Compressed row storage of sparse matrix A

value( ) 1 4 11 2 5 7 6 8 10 3 9 12

rowInd( ) 0 1 4 0 1 2 1 2 3 0 2 4

colPtr( ) 0 3 6 8 9 12

Compressed column storage of sparse matrix A



Coordinate vs. Compressed

• Coordinate storage: 

– No assumption of element order: easy add and delete.

• Compressed storage:

– Slightly smaller storage space

– Assume sorted element orders in row or column

– Easy trasversing in multiplication

– Overhead in add and delete

• Many practical problems like circuit simulation have a fixed matrix 

topology derived from the circuit topology (aka, the netlist).

– Non-zero elements in the matrix have fixed row and column position, or they 

are “symbolic non-zero elements”

– The nonzero element has various different floating-point values during the 

computation: “numerical non-zero elements”



Common Sparse Matrix Utility Functions

matrix* createMatrix(n); // intend to create a sparse matrix of rank n, 
// but without reserving all storage.  
// Memory scheme varies.

void addElement(*matrix, rowInd, colInd, value);
void deleteElement(*matrix, rowInd, colInd);

double retrieveElement(*matrix, rowInd, colInd);

integer rankMatrix(*matrix); // return 5 for above
integer countElementMatrix(*matrix); // return 12 for above



Hacker Practice

.

• Create the sparse matrix A in the row compressed format of Table 2 

with three vectors: value[12]; rowPtr[6]; colInd[12].  

• Implement the function retrieveElement( ).  

• Use the 5 by 5 printout to verify your program
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value( ) 1 2 3 4 5 6 7 8 9 10 11 12
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Compressed row storage of sparse matrix A


