ECE 4960

 Spring 2017
Lecture 6

Local Analysis: Integration

Edwin C. Kan
School of Electrical and Computer Engineering
Cornell University

Integration; Interpolation; Quadrature

$$
I=\int_{a}^{b} f(x) d x=\hat{f} \cdot(a-b)
$$

$$
B H=\sqrt{a b}
$$

- Integration is important to investigate the "average" behavior or the "general trend".
- Mathematically this is very similar to "interpolation" and "quadrature scheme", where numerical quadrature means finding the value of a definite integral.
- In the finite element method, quadrature also refers to how the approximation function approaches the real function within the element.

Discretization of the Finite Integral

$$
\int_{a}^{b} f(x) d x \cong \sum_{k=1}^{N} h_{k}\left(w_{k} f\left(x_{k}\right)\right)=\sum_{k=1}^{N} \hat{I}_{k}=\hat{I}
$$

- Assume the integration value of $f(x)$ is between (a, b), which we will discretize to N segments by $h_{k}(k=1 \ldots N)$. Finer h resolution will give a better approximation to the analytical integration.
- Without loss of generality, we will shift and normalize the coordinates from $\left(x_{k}, x_{k+1}\right)$ to $(-1,1)$, which will add a constant to the original integral.

Possible Choices of the Quadrature Schemes

Normalized quadrature approximation between $(-1,1)$

Type	Approximation	Order of precision
Rectangle	$\hat{I}_{k}=h_{k} f\left(x_{k}\right)$	$1^{\text {st }}$ order
Trapezoid	$\hat{I}_{k}=h_{k}\left(\frac{1}{2} f\left(x_{k}\right)+\frac{1}{2} f\left(x_{k+1}\right)\right)$	$2^{\text {nd }}$ order
Midpoint	$\hat{I}_{k}=h_{k} f\left(x_{k+1 / 2}\right)$	$2^{\text {nd }}$ order
Simpson	$\hat{I}_{k}=h_{k}\left(\frac{1}{6} f\left(x_{k}\right)+\frac{4}{6} f\left(x_{k+1 / 2}\right)+\frac{1}{6} f\left(x_{k+1}\right)\right)$	$4^{\text {th }}$ order
2-point Gaussian	$\hat{I}_{k}=h_{k}\left(\frac{1}{2} f\left(x_{k+1 / 2}-\frac{1}{2 \sqrt{3}} h_{k}\right)+\frac{1}{2} f\left(x_{k+1 / 2}+\frac{1}{2 \sqrt{3}} h_{k}\right)\right)$	$4^{\text {th }}$ order
3-point Gaussian	$\hat{I}_{k}=h_{k}\left(\frac{5}{18} f\left(x_{k+1 / 2}-\frac{\sqrt{3}}{2 \sqrt{5}} h_{k}\right)+\frac{8}{18} f\left(x_{k+1 / 2}\right)+\frac{5}{18} f\left(x_{k+1 / 2}+\frac{\sqrt{3}}{2 \sqrt{5}} h_{k}\right)\right.$	$6^{6^{\text {th }} \text { order }}$

Examples of Quadrature Schemes

- Take $f(x)=7 x^{3}-8 x^{2}-3 x+3$, and $\int_{-1}^{1} f(x) d x=\frac{2}{3}$ in blue line
- Trapezoidal rule is the orange dash line and the approximation is -10 .
- Both the Simpson rule and the 2-point Gaussian quadrature (in the black dash line) will give the exact $2 / 3$ answer!

Simpson:
$\hat{I}_{k}=h_{k}\left(\frac{1}{6} f\left(x_{k}\right)+\frac{4}{6} f\left(x_{k+1 / 2}\right)+\frac{1}{6} f\left(x_{k+1}\right)\right)=2 \times\left(\frac{1}{6} \cdot(-9)+\frac{4}{6} \cdot 3+\frac{1}{6}(-1)\right)=\frac{2}{3}$

Similar Derivation from Taylor Series

- Assume that we are looking at the normalizd and shifted $f(x)$ is polynomial as $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\ldots$

Zero-order term:

- All quadrature approximations in Table 1 can only estimate the a_{0} integration correctly to $2 a_{0}$ between $(-1,1)$, if:

$$
\sum_{i=1}^{N} w_{i}=1
$$

Quadrature from Taylor Series

Second-order term:

- Integrate $f(x)=a_{2} x^{2}$ correctly to achieve $4^{\text {th }}$ order accuracy (as x and x^{3} terms will not contribute to the integrand)

$$
\frac{a_{2}}{3}\left(x_{k+1}^{3}-x_{k}^{3}\right)=\frac{a_{2}}{3}\left(\left(x_{k}+h_{k}\right)^{3}-x_{k}^{3}\right)=\frac{a_{2}}{3}\left(3 x_{k}^{2} h_{k}+3 x_{k} h_{k}^{2}+h_{k}^{3}\right)
$$

Simpson quadrature at boundary and midpoint:

$$
\begin{aligned}
& h_{k}\left(\frac{1}{6} f\left(x_{k}\right)+\frac{4}{6} f\left(x_{k+1 / 2}\right)+\frac{1}{6} f\left(x_{k+1}\right)\right) \\
& =h_{k}\left(\frac{1}{6} f\left(x_{k}\right)+\frac{4}{6}\left(f\left(x_{k}\right)+\frac{h_{k}}{2} f^{\prime}\left(x_{k}\right)+\frac{h_{k}^{2}}{8} f^{\prime \prime}\left(x_{k}\right)\right)+\frac{1}{6}\left(f\left(x_{k}\right)+h_{k} f^{\prime}\left(x_{k}\right)+\frac{h_{k}^{2}}{2} f^{\prime \prime}\left(x_{k}\right)\right)\right) \\
& =h_{k}\left(f\left(x_{k}\right)+\frac{h_{k}}{2} f^{\prime}\left(x_{k}\right)+\frac{h_{k}^{2}}{6} f^{\prime \prime}\left(x_{k}\right)+O\left(h_{k}^{3}\right)\right)=h_{k}\left(a_{2} x_{k}^{2}+\frac{h_{k}}{2}\left(2 a_{2} x_{k}\right)+\frac{h_{k}^{2}}{6}\left(2 a_{2}\right)+O\left(h_{k}^{3}\right)\right) \\
& =\frac{a_{2}}{3}\left(3 x_{k}^{2} h_{k}+3 x_{k} h_{k}^{2}+h_{k}^{3}\right)+O\left(h_{k}^{4}\right) \quad \text { for } \quad f(x)=a_{2} x^{2}
\end{aligned}
$$

Fourth-Order Two-Point Quadrature

Solve the w_{k} and x_{k} so that all three coefficients match:

$$
\begin{gathered}
w_{1} f\left(x_{k}+\ell_{1}\right)+w_{2} f\left(x_{k}+\ell_{2}\right)=f\left(x_{k}\right)+\frac{h_{k}}{2} f^{\prime}\left(x_{k}\right)+\frac{h_{k}^{2}}{6} f^{\prime \prime}\left(x_{k}\right) \\
=w_{1}\left(f\left(x_{k}\right)+\ell_{1} f^{\prime}\left(x_{k}\right)+\frac{\ell_{1}^{2}}{2} f^{\prime \prime}\left(x_{k}\right)\right)+w_{2}\left(f\left(x_{k}\right)+\ell_{2} f^{\prime}\left(x_{k}\right)+\frac{\ell_{2}^{2}}{2} f^{\prime \prime}\left(x_{k}\right)\right) \\
w_{1}+w_{2}=1 \\
w_{1} \ell_{1}+w_{2} \ell_{2}=\frac{h_{k}}{2} \\
w_{1} \ell_{1}^{2}+w_{2} \ell_{2}^{2}=\frac{h_{k}^{2}}{3}
\end{gathered}
$$

Four variables and three constraint equations: infinite choices

Two-Point Gaussian Quadrature

Make the sampling symmetric: $\ell_{1}, \ell_{2}=\frac{1}{2}\left(1 \pm \frac{1}{\sqrt{3}}\right)$
Check:

$$
\begin{aligned}
& h_{k}\left(\frac{1}{2} f\left(x_{k+1 / 2}-\frac{1}{2 \sqrt{3}} h_{k}\right)+\frac{1}{2} f\left(x_{k+1 / 2}+\frac{1}{2 \sqrt{3}} h_{k}\right)\right) \\
& =h_{k}\left(\frac{1}{2}\left(f\left(x_{k}\right)+\left(\frac{h_{k}}{2}-\frac{h_{k}}{2 \sqrt{3}}\right) f^{\prime}\left(x_{k}\right)+\frac{1}{2}\left(\frac{h_{k}}{2}-\frac{h_{k}}{2 \sqrt{3}}\right)^{2} f^{\prime \prime}\left(x_{k}\right)\right)\right. \\
& +\frac{1}{2}\left(f\left(x_{k}\right)+\left(\frac{h_{k}}{2}+\frac{h_{k}}{2 \sqrt{3}}\right) f^{\prime}\left(x_{k}\right)+\frac{1}{2}\left(\frac{h_{k}}{2}+\frac{h_{k}}{2 \sqrt{3}}\right)^{2} f^{\prime \prime}\left(x_{k}\right)\right) \\
& =h_{k}\left(f\left(x_{k}\right)+\frac{h_{k}}{2} f^{\prime}\left(x_{k}\right)+\frac{h_{k}^{2}}{6} f^{\prime \prime}\left(x_{k}\right)+O\left(h_{k}^{3}\right)\right) \\
& =\frac{a_{2}}{3}\left(3 x_{k}^{2} h_{k}+3 x_{k} h_{k}^{2}+h_{k}^{3}\right)+O\left(h_{k}^{4}\right) \quad \text { for } \quad f(x)=a_{2} x^{2}
\end{aligned}
$$

hp Adaptivity in Quadrature

- Similar to hp adaptivity in the local analysis for differentiation:
- Making h smaller, we can have better integration approximation according to $\mathrm{O}\left(h^{p}\right)$.
- Making the order of approximation higher (p adaptivity), we can have better integration approximation on the segment h.
- We can use different choices of h_{k} to compare the relative accuracy of approximation.
- We can use different choices of order of approximation to compare the relative accuracy of approximation, and can then choose the appropriate h_{k} !

Hacker Practice

For $f(x)=e^{x}$, we know the exact solution to the integration as:

$$
\int_{-1}^{1} e^{x} d x=e-e^{-1} \cong 2.3504
$$

Notice that this is a monotonic function, so the order of approximation will not cause big deviation as the cubic function before. Fill in the table below:

Quadrature	Numerical	
Schemes	approximation	
Retangle		Error
Trapezoid		
Mid-point		
Simpson		
2-point Gaussian		

