ECE 4960 Spring 2017

Lecture 6

Local Analysis: Integration

Edwin C. Kan

School of Electrical and Computer Engineering Cornell University

Integration; Interpolation; Quadrature

$$I = \int_{a}^{b} f(x) dx = \hat{f} \cdot (a - b)$$

- Integration is important to investigate the "average" behavior or the "general trend".
- Mathematically this is very similar to "interpolation" and "quadrature scheme", where numerical quadrature means finding the value of a definite integral.
- In the finite element method, quadrature also refers to how the approximation function approaches the real function within the element.

Discretization of the Finite Integral

- Assume the integration value of f(x) is between (a, b), which we will discretize to N segments by h_k (k = 1...N). Finer h resolution will give a better approximation to the analytical integration.
- Without loss of generality, we will shift and normalize the coordinates from (*x_k*, *x_{k+1}*) to (-1, 1), which will add a constant to the original integral.

Possible Choices of the Quadrature Schemes

Normalized quadrature approximation between (-1, 1)

Туре	Approximation	Order of precision
Rectangle	$\hat{I}_k = h_k f(x_k)$	1 st order
Trapezoid	$\hat{I}_{k} = h_{k} \left(\frac{1}{2} f(x_{k}) + \frac{1}{2} f(x_{k+1}) \right)$	2 nd order
Midpoint	$\hat{I}_k = h_k f(x_{k+1/2})$	2 nd order
Simpson	$\hat{I}_{k} = h_{k} \left(\frac{1}{6} f(x_{k}) + \frac{4}{6} f(x_{k+1/2}) + \frac{1}{6} f(x_{k+1}) \right)$	4 th order
2-point Gaussian	$\hat{I}_{k} = h_{k} \left(\frac{1}{2} f \left(x_{k+1/2} - \frac{1}{2\sqrt{3}} h_{k} \right) + \frac{1}{2} f \left(x_{k+1/2} + \frac{1}{2\sqrt{3}} h_{k} \right) \right)$	4 th order
3-point Gaussian	$\hat{I}_{k} = h_{k} \left(\frac{5}{18} f \left(x_{k+1/2} - \frac{\sqrt{3}}{2\sqrt{5}} h_{k} \right) + \frac{8}{18} f \left(x_{k+1/2} \right) + \frac{5}{18} f \left(x_{k+1/2} + \frac{\sqrt{3}}{2\sqrt{5}} h_{k} \right) \right)$	6 th order

Examples of Quadrature Schemes

Simpson:

- Take $f(x) = 7x^3 8x^2 3x + 3$, and $\int_{-1}^{1} f(x) dx = \frac{2}{3}$ in blue line
- Trapezoidal rule is the orange dash line and the approximation is -10.
- Both the Simpson rule and the 2-point Gaussian quadrature (in the black dash line) will give the exact 2/3 answer!

$$\hat{I}_{k} = h_{k} \left(\frac{1}{6} f(x_{k}) + \frac{4}{6} f(x_{k+1/2}) + \frac{1}{6} f(x_{k+1}) \right) = 2 \times \left(\frac{1}{6} \cdot (-9) + \frac{4}{6} \cdot 3 + \frac{1}{6} (-1) \right) = \frac{2}{3}$$

Similar Derivation from Taylor Series

• Assume that we are looking at the normalized and shifted f(x) is polynomial as $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \dots$

Zero-order term:

• All quadrature approximations in Table 1 can only estimate the a_0 integration correctly to $2a_0$ between (-1, 1), if:

$$\sum_{i=1}^{N} w_i = 1$$

Quadrature from Taylor Series

Second-order term:

• Integrate $f(x) = a_2 x^2$ correctly to achieve 4th order accuracy (as x and x^3 terms will not contribute to the integrand)

$$\frac{a_2}{3}\left(x_{k+1}^3 - x_k^3\right) = \frac{a_2}{3}\left(\left(x_k + h_k\right)^3 - x_k^3\right) = \frac{a_2}{3}\left(3x_k^2h_k + 3x_kh_k^2 + h_k^3\right)$$

Simpson quadrature at boundary and midpoint:

$$\begin{aligned} h_k \bigg(\frac{1}{6} f(x_k) + \frac{4}{6} f(x_{k+1/2}) + \frac{1}{6} f(x_{k+1}) \bigg) \\ &= h_k \bigg(\frac{1}{6} f(x_k) + \frac{4}{6} \bigg(f(x_k) + \frac{h_k}{2} f'(x_k) + \frac{h_k^2}{8} f''(x_k) \bigg) + \frac{1}{6} \bigg(f(x_k) + h_k f'(x_k) + \frac{h_k^2}{2} f''(x_k) \bigg) \bigg) \\ &= h_k \bigg(f(x_k) + \frac{h_k}{2} f'(x_k) + \frac{h_k^2}{6} f''(x_k) + O(h_k^3) \bigg) = h_k \bigg(a_2 x_k^2 + \frac{h_k}{2} (2a_2 x_k) + \frac{h_k^2}{6} (2a_2) + O(h_k^3) \bigg) \\ &= \frac{a_2}{3} \big(3x_k^2 h_k + 3x_k h_k^2 + h_k^3 \big) + O(h_k^4) \quad for \quad f(x) = a_2 x^2 \end{aligned}$$

Fourth-Order Two-Point Quadrature

Solve the w_k and x_k so that all three coefficients match:

$$w_{1}f(x_{k} + \ell_{1}) + w_{2}f(x_{k} + \ell_{2}) = f(x_{k}) + \frac{h_{k}}{2}f'(x_{k}) + \frac{h_{k}^{2}}{6}f''(x_{k})$$

$$= w_{1}\left(f(x_{k}) + \ell_{1}f'(x_{k}) + \frac{\ell_{1}^{2}}{2}f''(x_{k})\right) + w_{2}\left(f(x_{k}) + \ell_{2}f'(x_{k}) + \frac{\ell_{2}^{2}}{2}f''(x_{k})\right)$$

$$w_{1} + w_{2} = 1$$

$$w_{1}\ell_{1} + w_{2}\ell_{2} = \frac{h_{k}}{2}$$

$$w_{1}\ell_{1}^{2} + w_{2}\ell_{2}^{2} = \frac{h_{k}^{2}}{3}$$

Four variables and three constraint equations: infinite choices

Two-Point Gaussian Quadrature

Make the sampling symmetric: $\ell_1, \ell_2 = \frac{1}{2} \left(1 \pm \frac{1}{\sqrt{3}} \right)$ Check:

$$h_{k}\left(\frac{1}{2}f\left(x_{k+1/2}-\frac{1}{2\sqrt{3}}h_{k}\right)+\frac{1}{2}f\left(x_{k+1/2}+\frac{1}{2\sqrt{3}}h_{k}\right)\right)$$

$$=h_{k}\left(\frac{1}{2}\left(f\left(x_{k}\right)+\left(\frac{h_{k}}{2}-\frac{h_{k}}{2\sqrt{3}}\right)f'(x_{k})+\frac{1}{2}\left(\frac{h_{k}}{2}-\frac{h_{k}}{2\sqrt{3}}\right)^{2}f''(x_{k})\right)\right)$$

$$=h_{k}\left(f\left(x_{k}\right)+\left(\frac{h_{k}}{2}+\frac{h_{k}}{2\sqrt{3}}\right)f'(x_{k})+\frac{1}{2}\left(\frac{h_{k}}{2}+\frac{h_{k}}{2\sqrt{3}}\right)^{2}f''(x_{k})\right)\right)$$

$$=h_{k}\left(f\left(x_{k}\right)+\frac{h_{k}}{2}f'(x_{k})+\frac{h_{k}^{2}}{6}f''(x_{k})+O(h_{k}^{3})\right)$$

$$=\frac{a_{2}}{3}\left(3x_{k}^{2}h_{k}+3x_{k}h_{k}^{2}+h_{k}^{3}\right)+O(h_{k}^{4}) \quad for \quad f(x)=a_{2}x^{2}$$

hp Adaptivity in Quadrature

- Similar to hp adaptivity in the local analysis for differentiation:
 - Making *h* smaller, we can have better integration approximation according to $O(h^p)$.
 - Making the order of approximation higher (*p* adaptivity), we can have better integration approximation on the segment *h*.
- We can use different choices of h_k to compare the relative accuracy of approximation.
- We can use different choices of order of approximation to compare the relative accuracy of approximation, and can then choose the appropriate $h_k!$

Hacker Practice

For $f(x) = e^x$, we know the exact solution to the integration as:

$$\int_{-1}^{1} e^{x} dx = e - e^{-1} \cong 2.3504$$

Notice that this is a monotonic function, so the order of approximation will not cause big deviation as the cubic function before. Fill in the table below:

Quadrature Schemes	Numerical approximation	Error
Retangle		
Trapezoid		
Mid-point		
Simpson		
2-point Gaussian		