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Approximation in Local Analysis
• It is often difficult to observe global behavior (weather, 

experiment, commerce, etc.) because our observation and 
measurement often have a scope and precision in space and time.  

• Critical to know between the known points (interpolation or 
integration to obtain the mean value) or beyond the known points 
(extrapolation or differentiation to obtain the slope or trends).

• What are the errors in the interpolation and extrapolation 
approximation?  What can we do about it?



Taylor Series for Local Analysis
• The approximation of a function A is Â.  

• Within a resolution limit or step size h, the approximation  is 
consistent if Â  A as h  0. 

• For the first derivative of a function (slope or margin) where A = 

f’(x), we can use:
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1st –order forward difference:

2nd–order central difference:



Interplay Between Truncation and Round-off
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Hacker Practice
 For f(x) = x2, we know the exact f’(x=1) =2.  
 Estimate f’(x=1) by:

 Varying the value of h from 0.1 to 10-18 to observe the relative 
error in calculating f’(x).  

 Repeat above with f(x) = x2 + 108.  

 Repeat the above by using
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Generalized Taylor Approximation
 Assume that in addition to f(x), we have two additional 

sampling points at f(x + h1) and f(x+h2).  
 We call x the base point.  We know nothing about f(x) except a 

few sampling point around x, which is thus called the “local 
analysis”.  

 Taylor expansion to the second order shows:

 O(h3) above means all terms with h3 or higher polynomials are 
truncated.
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Second-Order Analysis by Three Points

 Only possible two-point evaluation: h1 = –h2

 In general, second-order approximation for f’(x) by three 
arbitrary points. Third-order approximation for f’(x) by four 
points, etc.
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General Observation from Taylor Series

 We can use knowledge of more points (h) to improve the 
approximation order (p).

 When h  0, the high-order error terms USUALLY diminish 
much faster, but not always.  Ex.: Odd functions.

 High-order terms can cause local oscillations in larger h.
 There are approximations that are not converging or consistent

by Taylor expansion.
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Other than Taylor Series
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 Taylor series are more intuitive, but the base functions of 1, x, 

x2, etc. are not orthogonal.
 For polynomials within (–1, 1), we can use orthogonal 

polynomials such as the Legendre series to improve efficiency in 
determining the expansion coefficients.

 Additional knowledge can help determine the most appropriate 
expansion series: coupled equation (how x1 can affect x2 in 
multi-variable case); exponential functions by Hermite series; 
discontinuity by discrete Galerkin.



Forward and Backward Euler
 When the local approximation is with respect to time, stability is 

governed by how we evaluate f’(t).
 Consider the exponential function: f(t) = C exp(at), where C is 

given by the initial values of f at t = 0.

 a < 0: exponential decay!
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Hacker Practice
 For f(t) = exp(–t), i.e., a = –1

 Compare the evaluation of f(t) for 0  t  20 by three methods:

1. Ground truth: f(t) = exp(–t)

2. Forward Euler with f(0) =1 and march with t = 0.5, t = 1.0 

and t = 2.0.

3. Backward Euler with f(0) =1 and march with t = 0.5, t = 1.0 

and t = 2.0.
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Observe the error in Backward Euler in relation with t even with 
absolute stability.



Richardson Extrapolation
 The choice of h2 = 2h1 = 2h deserves a closer look:
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 By f(x), f(x+h) and f(x+2h), we can make a second-order 
approximation to f’(x):
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(1)

(2)

(3)

 (3) can be generalized to higher precision by a nested procedure

 Comparison of (1) and (2): h adaptivity
 Comparison of (1) and (3): p adaptivity



hp Adaptivity

 h adaptivity: Improvement in approximation by using small h
(before precision error dominates)

 p adaptivity: Improvement in approximation by using higher 
order functions with errors  O(hp)

 For simple functions like f(x) = x2, we will have O(h) 
improvement with smaller h (before precision error dominates), 
but EXACT solution when second-order approximation is used: 
an example where p adpativity is much better than h adaptivity.

 Most often the analytical forms of f(x) and f’(x) are unknown, 
although we can evaluate f(x) with given x (when x is a multi-
variate vector, f(x) evaluation can be computationally expensive)



Realistic Examples for f(x)

 f(V1, V2, …) can be the transient current to the load, where Vi is 
the nodal voltage of circuit node i.

 f(1, 1, 2, 2, …) is the distance (or vector) from the robotic 
palm tip to the object to be fetched, where (i, i) is the solid 
angle of the i-th robotic joints in a pseudo-rigid-body robotic 
arm.



How can we verify if adaptivity by either h or p is 
good enough to represent the realistic physical 
world?

Caveat: The ground truth may be unknown, and sampling 
may be expensive or limited!



Richardson Extrapolation Coefficient
 When the ground truth is known or can be estimated by 

another method (say at the asymptotic trend), we can estimate 
the error E(h) and E(2h) of each approximation by x + h and by 
x + 2h. 

 The Richardson extrapolation coefficient  is defined as:

  will be close to 2 for first-order approximation, and 2p for p-th
order approximation.
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Richardson Coefficient Without Known Truth
 If the ground truth is unknown, we can alternatively estimate:

where  Â(h) represents the local approximation function with 
sampling using h.

 Still the same:  will be close to 2 for first-order approximation, 
and 2p for p-th order approximation.
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Extension of Richardson Extrapolation

 We have seen the h adaptivity in Richardson extrapoltion.  We 
can apply the similar principle to compare the p adaptivity, 
which we will do in the later treatment of ordinary differential 
equation (ODE) when we can give more realistic examples.

 Can we use the p error estimate to guide the choice of h? 



Importance in Choice of h

 In a 3D geometry where we hope to know the temperature 
equation by solving the Laplace equation

 If we change h to h/2 in all directions
 No. of grid points: 8X
 No. of variables: 8X
 Computational cost: 64X to 512X



Hacker Practice
 For f(x) = x3, we know the exact f’(x=1) = 3.  
 Estimate f’(x=1), varying the value of h from 2-4 to 2-10

 Tabulate the relative error in calculating f’(x).  
 Estimate  for each choice of h by:
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After Thoughts
 If you get a correct estimate of  by: 

 Is it likely that you have a coding error such as:

 Is it likely that you have a wrong implementation of the local 
analysis (when x is a multi-variable vector)?

 Did you check whether the implementation of f(x) is correct?

 How then should you plan your modular programming and 
regression test???
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