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Approximation in Local Analysis
• It is often difficult to observe global behavior (weather, 

experiment, commerce, etc.) because our observation and 
measurement often have a scope and precision in space and time.  

• Critical to know between the known points (interpolation or 
integration to obtain the mean value) or beyond the known points 
(extrapolation or differentiation to obtain the slope or trends).

• What are the errors in the interpolation and extrapolation 
approximation?  What can we do about it?



Taylor Series for Local Analysis
• The approximation of a function A is Â.  

• Within a resolution limit or step size h, the approximation  is 
consistent if Â  A as h  0. 

• For the first derivative of a function (slope or margin) where A = 

f’(x), we can use:
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1st –order forward difference:

2nd–order central difference:



Interplay Between Truncation and Round-off
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Hacker Practice
 For f(x) = x2, we know the exact f’(x=1) =2.  
 Estimate f’(x=1) by:

 Varying the value of h from 0.1 to 10-18 to observe the relative 
error in calculating f’(x).  

 Repeat above with f(x) = x2 + 108.  

 Repeat the above by using
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Generalized Taylor Approximation
 Assume that in addition to f(x), we have two additional 

sampling points at f(x + h1) and f(x+h2).  
 We call x the base point.  We know nothing about f(x) except a 

few sampling point around x, which is thus called the “local 
analysis”.  

 Taylor expansion to the second order shows:

 O(h3) above means all terms with h3 or higher polynomials are 
truncated.
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Second-Order Analysis by Three Points

 Only possible two-point evaluation: h1 = –h2

 In general, second-order approximation for f’(x) by three 
arbitrary points. Third-order approximation for f’(x) by four 
points, etc.
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General Observation from Taylor Series

 We can use knowledge of more points (h) to improve the 
approximation order (p).

 When h  0, the high-order error terms USUALLY diminish 
much faster, but not always.  Ex.: Odd functions.

 High-order terms can cause local oscillations in larger h.
 There are approximations that are not converging or consistent

by Taylor expansion.
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Other than Taylor Series
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 Taylor series are more intuitive, but the base functions of 1, x, 

x2, etc. are not orthogonal.
 For polynomials within (–1, 1), we can use orthogonal 

polynomials such as the Legendre series to improve efficiency in 
determining the expansion coefficients.

 Additional knowledge can help determine the most appropriate 
expansion series: coupled equation (how x1 can affect x2 in 
multi-variable case); exponential functions by Hermite series; 
discontinuity by discrete Galerkin.



Forward and Backward Euler
 When the local approximation is with respect to time, stability is 

governed by how we evaluate f’(t).
 Consider the exponential function: f(t) = C exp(at), where C is 

given by the initial values of f at t = 0.

 a < 0: exponential decay!
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Hacker Practice
 For f(t) = exp(–t), i.e., a = –1

 Compare the evaluation of f(t) for 0  t  20 by three methods:

1. Ground truth: f(t) = exp(–t)

2. Forward Euler with f(0) =1 and march with t = 0.5, t = 1.0 

and t = 2.0.

3. Backward Euler with f(0) =1 and march with t = 0.5, t = 1.0 

and t = 2.0.
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Observe the error in Backward Euler in relation with t even with 
absolute stability.



Richardson Extrapolation
 The choice of h2 = 2h1 = 2h deserves a closer look:
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 By f(x), f(x+h) and f(x+2h), we can make a second-order 
approximation to f’(x):
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 (3) can be generalized to higher precision by a nested procedure

 Comparison of (1) and (2): h adaptivity
 Comparison of (1) and (3): p adaptivity



hp Adaptivity

 h adaptivity: Improvement in approximation by using small h
(before precision error dominates)

 p adaptivity: Improvement in approximation by using higher 
order functions with errors  O(hp)

 For simple functions like f(x) = x2, we will have O(h) 
improvement with smaller h (before precision error dominates), 
but EXACT solution when second-order approximation is used: 
an example where p adpativity is much better than h adaptivity.

 Most often the analytical forms of f(x) and f’(x) are unknown, 
although we can evaluate f(x) with given x (when x is a multi-
variate vector, f(x) evaluation can be computationally expensive)



Realistic Examples for f(x)

 f(V1, V2, …) can be the transient current to the load, where Vi is 
the nodal voltage of circuit node i.

 f(1, 1, 2, 2, …) is the distance (or vector) from the robotic 
palm tip to the object to be fetched, where (i, i) is the solid 
angle of the i-th robotic joints in a pseudo-rigid-body robotic 
arm.



How can we verify if adaptivity by either h or p is 
good enough to represent the realistic physical 
world?

Caveat: The ground truth may be unknown, and sampling 
may be expensive or limited!



Richardson Extrapolation Coefficient
 When the ground truth is known or can be estimated by 

another method (say at the asymptotic trend), we can estimate 
the error E(h) and E(2h) of each approximation by x + h and by 
x + 2h. 

 The Richardson extrapolation coefficient  is defined as:

  will be close to 2 for first-order approximation, and 2p for p-th
order approximation.
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Richardson Coefficient Without Known Truth
 If the ground truth is unknown, we can alternatively estimate:

where  Â(h) represents the local approximation function with 
sampling using h.

 Still the same:  will be close to 2 for first-order approximation, 
and 2p for p-th order approximation.
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Extension of Richardson Extrapolation

 We have seen the h adaptivity in Richardson extrapoltion.  We 
can apply the similar principle to compare the p adaptivity, 
which we will do in the later treatment of ordinary differential 
equation (ODE) when we can give more realistic examples.

 Can we use the p error estimate to guide the choice of h? 



Importance in Choice of h

 In a 3D geometry where we hope to know the temperature 
equation by solving the Laplace equation

 If we change h to h/2 in all directions
 No. of grid points: 8X
 No. of variables: 8X
 Computational cost: 64X to 512X



Hacker Practice
 For f(x) = x3, we know the exact f’(x=1) = 3.  
 Estimate f’(x=1), varying the value of h from 2-4 to 2-10

 Tabulate the relative error in calculating f’(x).  
 Estimate  for each choice of h by:
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After Thoughts
 If you get a correct estimate of  by: 

 Is it likely that you have a coding error such as:

 Is it likely that you have a wrong implementation of the local 
analysis (when x is a multi-variable vector)?

 Did you check whether the implementation of f(x) is correct?

 How then should you plan your modular programming and 
regression test???
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