ECE 4960

Spring 2017

Lecture 5

Local Analysis: Differentiation

Edwin C. Kan
School of Electrical and Computer Engineering
Cornell University

Approximation in Local Analysis

- It is often difficult to observe global behavior (weather, experiment, commerce, etc.) because our observation and measurement often have a scope and precision in space and time.
- Critical to know between the known points (interpolation or integration to obtain the mean value) or beyond the known points (extrapolation or differentiation to obtain the slope or trends).
- What are the errors in the interpolation and extrapolation approximation? What can we do about it?

Taylor Series for Local Analysis

- The approximation of a function A is \hat{A}.
- Within a resolution limit or step size h, the approximation is consistent if $\hat{A} \rightarrow A$ as $h \rightarrow 0$.
- For the first derivative of a function (slope or margin) where $A=$ $f^{\prime}(x)$, we can use:
$1^{\text {st }}$-order forward difference: $f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}+O(h)$
$2^{\text {nd }}-$ order central difference: $\quad f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}+O\left(h^{2}\right)$

Interplay Between Truncation and Round-off

Hacker Practice

\square For $f(x)=x^{2}$, we know the exact $f^{\prime}(x=1)=2$.
\square Estimate $f^{\prime}(x=1)$ by:

$$
f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}+O(h)
$$

\square Varying the value of h from 0.1 to 10^{-18} to observe the relative error in calculating $f^{\prime}(x)$.
\square Repeat above with $f(x)=x^{2}+10^{8}$.
\square Repeat the above by using

$$
f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}+O\left(h^{2}\right)
$$

Generalized Taylor Approximation

\square Assume that in addition to $f(x)$, we have two additional sampling points at $f\left(x+h_{1}\right)$ and $f\left(x+h_{2}\right)$.
\square We call x the base point. We know nothing about $f(x)$ except a few sampling point around x, which is thus called the "local analysis".
\square Taylor expansion to the second order shows:

$$
\begin{aligned}
& f\left(x+h_{1}\right)=f(x)+h_{1} \cdot f^{\prime}(x)+\frac{1}{2} h_{1}^{2} f^{\prime \prime}(x)+O\left(h^{3}\right) \\
& f\left(x+h_{2}\right)=f(x)+h_{2} \cdot f^{\prime}(x)+\frac{1}{2} h_{2}^{2} f^{\prime \prime}(x)+O\left(h^{3}\right)
\end{aligned}
$$

$\square O\left(h^{3}\right)$ above means all terms with h^{3} or higher polynomials are truncated.

Second-Order Analysis by Three Points

$$
\begin{array}{rll}
& \left\{f\left(x+h_{1}\right)=f(x)+h_{1} \cdot f^{\prime}(x)+\frac{1}{2} h_{1}^{2} f^{\prime \prime}(x)+O\left(h^{3}\right)\right\} & \times h_{2}^{2} \\
+ & \left\{f\left(x+h_{2}\right)=f(x)+h_{2} \cdot f^{\prime}(x)+\frac{1}{2} h_{2}^{2} f^{\prime \prime}(x)+O\left(h^{3}\right)\right\} & \times\left(-h_{1}^{2}\right) \\
\hline
\end{array}
$$

$$
f^{\prime}(x)=\frac{h_{1}}{h_{2}\left(h_{1}-h_{2}\right)} f\left(x+h_{2}\right)-\frac{h_{1}+h_{2}}{h_{1} h_{2}} f(x)-\frac{h_{2}}{h_{1}\left(h_{1}-h_{2}\right)} f\left(x+h_{1}\right)+O\left(h^{2}\right)
$$

Only possible two-point evaluation: $h_{l}=-h_{2}$
\square In general, second-order approximation for $f^{\prime}(x)$ by three arbitrary points. Third-order approximation for $f^{\prime}(x)$ by four points, etc.

General Observation from Taylor Series

$$
\begin{aligned}
& f(x+h)=f(x)+h \cdot f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\frac{h^{3}}{3!} f^{(3)}(x)+\ldots+\frac{h^{n}}{n!} f^{(n)}(x)+\ldots \\
& \quad=\sum_{n=1}^{\infty} \frac{h^{n}}{n!} f^{(n)}(x) \cong \sum_{n=1}^{p} \frac{h^{n}}{n!} f^{(n)}(x)+O\left(h^{p+1}\right)
\end{aligned}
$$

\square We can use knowledge of more points (h) to improve the approximation order (p).
\square When $h \rightarrow 0$, the high-order error terms USUALLY diminish much faster, but not always. Ex.: Odd functions.
High-order terms can cause local oscillations in larger h.
\square There are approximations that are not converging or consistent by Taylor expansion.

$$
\lim _{x \rightarrow 0} \frac{e^{-a / x}}{x^{n}} \rightarrow 0 ; \quad \lim _{x \rightarrow 0} \frac{\exp \left(-\frac{a^{2}}{x^{2}}\right)}{x^{n}} \rightarrow 0
$$

Other than Taylor Series

\square Taylor series are more intuitive, but the base functions of $1, x$, x^{2}, etc. are not orthogonal.
\square For polynomials within ($-1,1$), we can use orthogonal polynomials such as the Legendre series to improve efficiency in determining the expansion coefficients.
\square Additional knowledge can help determine the most appropriate expansion series: coupled equation (how x_{1} can affect x_{2} in multi-variable case); exponential functions by Hermite series; discontinuity by discrete Galerkin.
legendre polynomials

Forward and Backward Euler

\square When the local approximation is with respect to time, stability is governed by how we evaluate $f^{\prime}(t)$.
\square Consider the exponential function: $f(t)=C \cdot \exp (a t)$, where C is given by the initial values of f at $t=0$.
$\square a<0$: exponential decay!

$$
f^{\prime}(t)=\frac{d f(t)}{d t}=a f(t)
$$

Forward Euler: $\frac{f(t)-f(t-\Delta t)}{\Delta t}=a f(t-\Delta t) \Rightarrow f(t)=(1+a \Delta t) f(t-\Delta t)$
Stable only if: $\Delta t<-\frac{1}{a}$
Backward Euler: $\frac{f(t)-f(t-\Delta t)}{\Delta t}=a f(t) \Rightarrow f(t)=\frac{1}{1-a \Delta t} f(t-\Delta t)$
Always stable: $0<\frac{1}{1-a \Delta t}<1$

Hacker Practice

\square For $f(t)=\exp (-t)$, i.e., $a=-1$
\square Compare the evaluation of $f(t)$ for $0 \leq t \leq 20$ by three methods:

1. Ground truth: $f(t)=\exp (-t)$
2. Forward Euler with $f(0)=1$ and march with $\Delta t=0.5, \Delta t=1.0$ and $\Delta t=2.0$.

$$
f(t)=(1-\Delta t) f(t-\Delta t)
$$

3. Backward Euler with $f(0)=1$ and march with $\Delta t=0.5, \Delta t=1.0$ and $\Delta t=2.0$.

$$
f(t)=\frac{1}{1+\Delta t} f(t-\Delta t)
$$

Observe the error in Backward Euler in relation with Δt even with absolute stability.

Richardson Extrapolation

- The choice of $h_{2}=2 h_{1}=2 h$ deserves a closer look:

$$
\begin{align*}
& f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}+E(h) ; \quad E(h)=O(h)=\frac{1}{2} h f^{\prime}(x)+O\left(h^{2}\right) \tag{1}\\
& f^{\prime}(x)=\frac{f(x+2 h)-f(x)}{2 h}+E(2 h) ; \quad E(2 h)=O(h)=\frac{1}{2} 2 h f^{\prime \prime}(x)+O\left(h^{2}\right) \tag{2}
\end{align*}
$$

- By $f(x), f(x+h)$ and $f(x+2 h)$, we can make a second-order approximation to $f^{\prime}(x)$:
$f^{\prime}(x)=\frac{-1}{2 h} f(x+2 h)-\frac{3}{2 h} f(x)+\frac{2}{h} f(x+h)+O\left(h^{2}\right)$
\square (3) can be generalized to higher precision by a nested procedure
Comparison of (1) and (2): h adaptivity
Comparison of (1) and (3): p adaptivity

hp Adaptivity

a h adaptivity: Improvement in approximation by using small h (before precision error dominates)
$\square p$ adaptivity: Improvement in approximation by using higher order functions with errors $\propto \mathrm{O}\left(h^{p}\right)$

- For simple functions like $f(x)=x^{2}$, we will have $O(h)$ improvement with smaller h (before precision error dominates), but EXACT solution when second-order approximation is used: an example where p adpativity is much better than h adaptivity.
\square Most often the analytical forms of $f(x)$ and $f^{\prime}(x)$ are unknown, although we can evaluate $f(x)$ with given x (when x is a multivariate vector, $f(x)$ evaluation can be computationally expensive)

Realistic Examples for $f(x)$

- $f\left(V_{1}, V_{2}, \ldots\right)$ can be the transient current to the load, where V_{i} is the nodal voltage of circuit node i.
$\square f\left(\varphi_{1}, \theta_{1}, \varphi_{2}, \theta_{2}, \ldots\right)$ is the distance (or vector) from the robotic palm tip to the object to be fetched, where ($\varphi_{i} \theta_{i}$) is the solid angle of the i-th robotic joints in a pseudo-rigid-body robotic arm.

How can we verify if adaptivity by either h or p is

 good enough to represent the realistic physical world?Caveat: The ground truth may be unknown, and sampling may be expensive or limited!

Richardson Extrapolation Coefficient

\square When the ground truth is known or can be estimated by another method (say at the asymptotic trend), we can estimate the error $E(h)$ and $E(2 h)$ of each approximation by $x+h$ and by $x+2 h$.
\square The Richardson extrapolation coefficient η is defined as:

$$
R(h) \equiv \frac{E(2 h)}{E(h)} \cong \eta
$$

$\square \quad \eta$ will be close to 2 for first-order approximation, and 2^{p} for p-th order approximation.

Richardson Coefficient Without Known Truth

\square If the ground truth is unknown, we can alternatively estimate:

$$
R(h) \cong \frac{\hat{A}(4 h)-\hat{A}(2 h)}{\hat{A}(2 h)-\hat{A}(h)} \cong \eta
$$

where $\hat{A}(h)$ represents the local approximation function with sampling using h.

$$
\text { Ex.: } \quad \hat{A}(h)=\left.f^{\prime}(x)\right|_{h}=\frac{f(x+h)-f(x)}{h}
$$

\square Still the same: η will be close to 2 for first-order approximation, and 2^{p} for p-th order approximation.

Extension of Richardson Extrapolation

\square We have seen the h adaptivity in Richardson extrapoltion. We can apply the similar principle to compare the p adaptivity, which we will do in the later treatment of ordinary differential equation (ODE) when we can give more realistic examples.
\square Can we use the p error estimate to guide the choice of h ?

Importance in Choice of h

\square In a 3D geometry where we hope to know the temperature equation by solving the Laplace equation
\square If we change h to $h / 2$ in all directions
\square No. of grid points: 8 X
\square No. of variables: 8X
\square Computational cost: 64X to 512X

Hacker Practice

\square For $f(x)=x^{3}$, we know the exact $f^{\prime}(x=1)=3$.
\square Estimate $f^{\prime}(x=1)$, varying the value of h from 2^{-4} to 2^{-10}

$$
\begin{gathered}
f^{\prime}(x)=\frac{f(x+h)-f(x)}{h} \\
f^{\prime}(x)=\frac{f(x+2 h)-f(x)}{2 h} \\
f^{\prime}(x)=\frac{-1}{2 h} f(x+2 h)-\frac{3}{2 h} f(x)+\frac{2}{h} f(x+h)
\end{gathered}
$$

\square Tabulate the relative error in calculating $f^{\prime}(x)$.
\square Estimate η for each choice of h by:

$$
\eta=\frac{E(2 h)}{E(h)}
$$

$$
\eta=\frac{\hat{A}(4 h)-\hat{A}(2 h)}{\hat{A}(2 h)-\hat{A}(h)}
$$

After Thoughts

\square If you get a correct estimate of η by:

$$
\eta=\frac{\hat{A}(4 h)-\hat{A}(2 h)}{\hat{A}(2 h)-\hat{A}(h)}
$$

\square Is it likely that you have a coding error such as:

$$
f^{\prime}(x)=\frac{f(x+2 h)-f(x)}{2} \cdot h
$$

\square Is it likely that you have a wrong implementation of the local analysis (when x is a multi-variable vector)?
\square Did you check whether the implementation of $f(x)$ is correct?
\square How then should you plan your modular programming and regression test???

