ECE 4960

Spring 2017

Lecture 4

Exception Handling: Soft Landing

Edwin C. Kan
School of Electrical and Computer Engineering
Cornell University

Signed Zero

- Zero is represented by the zero exponent e and the zero mantissa f. The sign field in IEEE standards actually makes a difference.
- With the "bias" in the floating point representation, the e field for zero in the normal expression of (-1)s.(1.f). 2^{e-1023} corresponds to $e_{\text {min }}-1$ or $(11111111110)_{2}$ or $-(1022)_{10}$.
- Remember that $(e)_{2}$ for $(11111111111)_{2}$ is reserved for exception of NaN and INF.
- $+0=-0$, rather than $-0<+0$
- As we distinguish INF and NINF, we need to distinguish -0 and +0 to make $1 /(1 / x)=x$, when x is INF or NINF.
- $\log (+0)$ is NINF and $\log (-0)$ is NaN.

Hacker Practice

\square Write a small function to test +0 and -0 .

In an upper-level function, use
+1.0; -1.0; DBL_MAX; - 1.0*DBL_MAX; +0; -0; INF, NINF; NaN
to test and generate report!

At home:
\square Write a small function to test INF and NINF.
\square Write a small function to test NaN .

If you do not know how to link with math.h or python built-in, use DBL_MAX = 10^{308}

Needs to Handle Underflowing

- With the "normal" or "normalized" expression when the e field represents a negative number and the mantissa $=(1 . f)_{2}>1$, the smallest number representable in double precision is 2^{-1022}.
- For $x=(1.1011)_{2} \times 2^{-1020}$ and $y=(1.1010)_{2} \times 2^{-1020}$ both are representable, legal floating-point numbers.
- They have a strange arithmetic property without exception handling: $x-y=0$ even though $x \neq y!!!$
- A programmer can easily write:

$$
\text { if }(x!=y)\{z=1.0 /(x-y)\} ;
$$

- This can have surprises when underflow happens!

Denormals

- Define in double precision $e_{\text {min }}=-1022$
- When $e>e_{\text {min }}-1$, the number is $1 . b_{1} b_{2} \ldots b_{p-1} \times 2^{e}$
- When $e=e_{\text {min }}-1$, the number is $0 . b_{1} b_{2} \ldots b_{p-1} \times 2^{e+1}$
- A convention called gradual underflow or soft landing.
- We can prove that $x=y \Leftrightarrow x-y=0$ always holds when denormals are used.

Hacker Practice

\square Observe the exception handling on your platform:

```
// Make x with easily observable precision
//
double x = 1.234567890123456;
int i = 1;
// The normalized number is above 4.9407*10^(-324)
x *= 10^(-307);
// Decrease the normalized number to the range of denormals
for (i=1; i<20; i++) {
    x /= 10.0;
    print(x);
}
```

\square Suggest another way to observe the soft landing behavior

