
ECE 4960

Spring 2017

Lecture 4

Exception Handling: Soft Landing

Edwin C. Kan

School of Electrical and Computer Engineering

Cornell University

Signed Zero

• Zero is represented by the zero exponent e and the zero mantissa
f. The sign field in IEEE standards actually makes a difference.

• With the “bias” in the floating point representation, the e field for
zero in the normal expression of (–1)s(1.f)2e-1023 corresponds to
emin – 1 or (11111111110)2 or (1022)10.

• Remember that (e)2 for (11111111111)2 is reserved for exception
of NaN and INF.

• +0 == 0, rather than 0 < +0

• As we distinguish INF and NINF, we need to distinguish 0 and +0
to make 1/(1/x) = x, when x is INF or NINF.

• log(+0) is NINF and log(0) is NaN.

Hacker Practice

 Write a small function to test +0 and –0.

In an upper-level function, use

+1.0; –1.0; DBL_MAX; – 1.0*DBL_MAX; +0; –0; INF, NINF; NaN

to test and generate report!

At home:
 Write a small function to test INF and NINF.
 Write a small function to test NaN.

If you do not know how to link with math.h or python built-in, use
DBL_MAX = 10308

Needs to Handle Underflowing

• With the “normal” or “normalized” expression when the e field
represents a negative number and the mantissa = (1.f)2 > 1, the
smallest number representable in double precision is 21022.

• For x = (1.1011)221020 and y = (1.1010)221020 both are
representable, legal floating-point numbers.

• They have a strange arithmetic property without exception
handling: x – y = 0 even though x y!!!

• A programmer can easily write:

if (x != y) { z = 1.0/(x – y)};

• This can have surprises when underflow happens!

Denormals

• Define in double precision emin = 1022

• When e > emin – 1, the number is 1.b1b2...bp-1 × 2e

• When e = emin – 1, the number is 0.b1b2...bp-1 × 2e + 1

• A convention called gradual underflow or soft landing.

• We can prove that x = y x y = 0 always holds when
denormals are used.

Hacker Practice
 Observe the exception handling on your platform:

// Make x with easily observable precision

//

double x = 1.234567890123456;

int i = 1;

// The normalized number is above 4.9407*10^(-324)

x *= 10^(–307);

// Decrease the normalized number to the range of denormals

for (i=1; i<20; i++) {

x /= 10.0;

print(x);

}

 Suggest another way to observe the soft landing behavior

