ECE 4960 Spring 2017

Lecture 4

Exception Handling: Soft Landing

Edwin C. Kan School of Electrical and Computer Engineering Cornell University

Signed Zero

- Zero is represented by the zero exponent *e* and the zero mantissa *f*. The sign field in IEEE standards actually makes a difference.
- With the "bias" in the floating point representation, the *e* field for zero in the normal expression of (-1)^s ·(1.f) ·2^{e-1023} corresponds to e_{min} 1 or (1111111110)₂ or -(1022)₁₀.
- Remember that (e)₂ for (1111111111)₂ is reserved for exception of NaN and INF.
- +0 == −0, rather than −0 < +0
- As we distinguish INF and NINF, we need to distinguish -0 and +0 to make 1/(1/x) = x, when x is INF or NINF.
- log(+0) is NINF and log(-0) is NaN.

Hacker Practice

❑ Write a small function to test +0 and −0.

In an upper-level function, use

+1.0; -1.0; DBL_MAX; -1.0*DBL_MAX; +0; -0; INF, NINF; NaN

to test and generate report!

At home:

- Write a small function to test INF and NINF.
- Write a small function to test NaN.

If you do not know how to link with math.h or python built-in, use DBL_MAX = 10^{308}

Needs to Handle Underflowing

- With the "normal" or "normalized" expression when the *e* field represents a negative number and the mantissa = $(1.f)_2 > 1$, the smallest number representable in double precision is 2^{-1022} .
- For $x = (1.1011)_2 \times 2^{-1020}$ and $y = (1.1010)_2 \times 2^{-1020}$ both are representable, legal floating-point numbers.
- They have a strange arithmetic property without exception handling: x − y = 0 even though x ≠ y!!!
- A programmer can easily write:

if
$$(x != y) \{ z = 1.0/(x - y) \};$$

• This can have surprises when underflow happens!

Denormals

- Define in double precision $e_{\min} = -1022$
- When $e > e_{\min} 1$, the number is $1.b_1b_2...b_{p-1} \times 2^e$
- When $e = e_{\min} 1$, the number is $0.b_1b_2...b_{p-1} \times 2^{e+1}$
- A convention called gradual underflow or soft landing.
- We can prove that x = y ⇔ x − y = 0 always holds when denormals are used.

Hacker Practice

Observe the exception handling on your platform:

```
// Make x with easily observable precision
//
double x = 1.234567890123456;
int i = 1;
// The normalized number is above 4.9407 \times 10^{-324}
x *= 10^{(-307)};
// Decrease the normalized number to the range of denormals
for (i=1; i<20; i++) {
       x /= 10.0;
      print(x);
}
```

Suggest another way to observe the soft landing behavior