
ECE 4960

Spring 2017

Lecture 3

Exception Handling: NaN and INF

Edwin C. Kan

School of Electrical and Computer Engineering

Cornell University

NaN

• When your programming environment does not know

how to calculate a floating-point operation, instead of

halting or core dump, an NaN (not a number) is assigned.

• NaN in double precision: the exponential field will be:
emax + 1 = 2047 (11111111111)2, while the mantissa is NOT
zero and the signed bit is arbitrary.

Operation NaN produced by

+, INF – INF, INF + NINF, etc.

 0 INF

/ 0/0, INF/INF, INF/NINF, etc.

% or REM x%0, INF%y, etc.

sqrt(x) x < 0

NaN Exception Handling

• When NaN is encountered, a global environmental

variable such as SIGFPE will be “set” or “thrown”

• In C++, you can also test with std::fetestexcept

• Most operations with NaN will generate NaN (time to

abandon that branch of computation)

Exceptions in Integers

• Unlike floating points, integers are EXACT and have no

precision errors.

• Round-off during type conversion can be platform

dependent.

long i = 5/3; return (i);

• Most C/C++ and Python will return 1 (truncation), while some
Matlab will return 2 (0.5 roundoff rules).

• 32-bit integers can easily overflow, such as 13!

Overflowing: Integers

• For 32-bit long integers, with the signed bit, the integer range is
between 231 to 231.

• If you are anticipating large numbers, either tolerate the limited
range, or you would have to concatenate multiple integers to
one, or you will just perform binaries directly.

• The standard practice in cryptography involves factorization of
integers represented by more than 4,000 bits.

Group Discussion

• What do you think is the best strategy to implement 1/0 in
integer operations?

1) Give the largest integer;

2) Reserve a symbol in integers and signal the exception;

3) Change to floating points INF and signal the exception;

4) Do not regulate it.

Overflowing: Floating Point

• Overflow exception cannot be handled by DBL_MAX

Ex: Computing

where (double) x =510160 and y = 410160.

• The best answer will be 310160, but during the computation
x2 and y2 will overflow. If x2 and y2 are replaced with the largest
number (DBL_MAX), we obtain a false impression of 0.0!!!!

• If we use INF x2 and y2, then the answer is a warning of NaN!

• INF rules: 1/INF = 0; 0/INF =0; 1/0 = INF; –1/0 = NINF

• INF rules: INF/INF = NaN; 0/0 =NaN; 1/0 = INF; -1/0 = NINF

• You can do better if you have more “existing knowledge” (say

using L’Hospital rules in the symbolic domain)…

22 yx

Overflow Exception Can Be Problematic

Computing the function f(x) = x/(x2 + 1).

For x = 210154, f(x) will be evaluated to 0 (it should be 510–155)

Compute the equivalent function: 1/(x + x-1).

This expression will not overflow prematurely for large x!

Because of infinity arithmeti, we will have the correct value even
when x = 0 or INF: 1/(x + x-1) = 1/(0 + INF) = 1/INF = 0.

Overflow Exception Still Useful

• Without infinity arithmetic, the expression 1/(x + x-1) requires a
test for x = 0, which not only adds extra instructions, but may
also disrupt a pipeline in parallel computing.

• INF arithmetic often avoids the need for special case checking;
however, formulas need to be carefully inspected to make sure
they do not have spurious behavior

Hacker Practice
 Observe the exception handling on your platform:

// Generating NaN and INF in double
//
double x = 0.0; y = 0.0; doubleResult1; doubleResult2;
doubleResult1 = 1/x; doubleResult2 = y/x;
print(doubleResult1, doubleResult2);

// Observe NaN and INF handling in integers
//
long m = 0; n = 0; intResult1; intResult2;
intResult1 = 1/m; intResult2 = m/n;
print(intResult1, intResult2);

// Observe overflow handling in integers
//
long i = 1; intFactorial = 1;
for (i= 2; i < 30; i++) {
intFactorial *= i;
print(i, intFactorial)
}

