ECE 4960 Spring 2017

Lecture 2

Numerical Representation and Precision

Edwin C. Kan School of Electrical and Computer Engineering Cornell University

Suggested Platform

- Language: C++
- OS: Linux (Debian or Ubuntu); generic platform or Oracle virtual machine
- Integrated development platform (IDE): code::block or generic Make with vim or emacs
- Tradeoffs between generic vs. customized platforms
 - Long-term evolution
 - Cost to the company
 - Porting among various platforms

Discussion

- What is your most comfortable platform?
 - Language
 - OS
 - Development environment

Integers and Floating Points in IEEE 754

Data type	No. of bits	Attributes	Exception	Smallest	Largest possible
(C++ declaration)			handling	possible ¹	
Integer	16	Seldom used now	None	-2^{15}	$2^{15} - 1$
(short)					
Integer	32	1 sign bit;	None	-2 ³¹	$2^{31} - 1$
(long)					
Single precision	32	Seldom used now;	NaN:	Only by <i>e</i> : 2 ⁻¹²⁶	$(2-2^{-23}) \cdot 2^{127} \cong$
floating point		1 sign bit (s) ;	<i>e</i> =255; <i>f≠</i> 0		3.4×10^{38}
(real)		23 mantissa bits (<i>f</i>);	INF:	Soft landing:	
		8 exponent bits (e).	<i>e</i> =255; <i>f</i> =0;	$2^{-23} \cdot 2^{-126} = 2^{-149}$	
			s=0	$\cong 1.4 \times 10^{-45}$	
		Normalized:	NINF:		
		$x = (-1)^{s} \cdot (1.f) \cdot 2^{e-127}$	<i>e</i> =255; <i>f</i> =0;		
		127 is the "bias".	s=1		
Double precision	64	1 sign bit (s) ;	NaN:	Only by <i>e</i> :	$(2-2^{-52}) \cdot 2^{1023} \cong$
floating point		52 mantissa bits (<i>f</i>);	<i>e</i> =2047; <i>f≠</i> 0	2^{-1022}	1.8×10^{308}
(double)		11 exponent bits (<i>e</i>).	INF:		
			<i>e</i> =2047; <i>f</i> =0;	Soft landing	
		Normalized:	s=0	$2^{-52} \cdot 2^{-1022} = 2^{-1022}$	
		$x = (-1)^{s} \cdot (1.f) \cdot 2^{e-1023}$	NINF:	$1074 \cong 4.9 \times 10^{-324}$	
			<i>e</i> =2047; <i>f</i> =0;		
		1023 is the "bias".	s=1		

¹Some bit combinations are used for exception handling. Also, very small number has underflow controls.

With 9 digits of precision

Group Discussion

- What does your calculator say by using these two equations?
- How can you make double precision calculation to show such problems?

Function Conditioning?

We can define a function condition number κ by the sensitivity to perturbation:

$$\left|\frac{\Delta f}{f}\right| \cong \kappa \left|\frac{\Delta x}{x}\right|$$
 or $\kappa = \left|\frac{\Delta f}{\Delta x} \cdot \frac{x}{f}\right|$

Only one of the possible error sources!

1

$$\left|\frac{f(-1.01) - f(-1)}{0.01 \times \left(\frac{f(-1.01) + f(-1)}{2}\right)}\right| = 2.01$$

$$\left|\frac{f(-3.0518 \times 10^{7}) - f(-3.0823 \times 10^{7})}{0.01 \times \left(\frac{f(-3.0518 \times 10^{7}) + f(-3.0518 \times 10^{7})}{2}\right)} = 0.55$$

Precision Improvement by Perturbation

The precision error comes from $-b \pm \sqrt{b^2 - 4ac}$

If we have **existing knowledge** (or by numerical tests) for this precision issue, we can use the perturbation solution for $4ac << b^2$,

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm b\sqrt{1 - \frac{4ac}{b^2}}}{2a} \cong \frac{-b \pm b\left(1 - \frac{2ac}{b^2}\right)}{2a}$$
$$= -\frac{c}{b} \quad or \quad -\frac{b}{a} + \frac{c}{b}$$

We now obtain the two roots of -1 and $1 - 10^8$! Check back substitution, $f(1 - 10^8) = 10^{-5}$ and $f(-10^8) = 10^3$

Much better than $f(-3.0518 \times 10^7) = -2.12 \times 10^{10}$ or $f(-3.2768 \times 10^7) = -2.20 \times 10^{10}$ in terms of residual of f(x)!

Ground Truth, Asymptote and Perturbation

- Do we know the "symbolic" truth? (related to formal verification, then we have 100% proof that some answers are correct)
- Can we **back substitute** the answer for validation?
- Do we know the answer at special points or asymptote? (such as 0, INF and NINF)
- Can we or do we need to check the sensitivity by **perturbation**?

Hacker Practice

- Solve the quadratic equation for $a = 10^{-20}$; $b = 10^3$; $c = 10^3$ in your platform.
- Where is the potential problem in precision?
- What are the possible ways to detect and compensate the nearly degenerate condition?