ECE 4960

Spring 2017

Lecture 2

Numerical Representation and Precision

Edwin C. Kan
School of Electrical and Computer Engineering
Cornell University

Suggested Platform

- Language: C++
- OS: Linux (Debian or Ubuntu); generic platform or Oracle virtual machine
- Integrated development platform (IDE): code::block or generic Make with vim or emacs
- Tradeoffs between generic vs. customized platforms
- Long-term evolution
- Cost to the company
- Porting among various platforms

Discussion

- What is your most comfortable platform?
- Language
- OS
- Development environment

Integers and Floating Points in IEEE 754

Data type (C++ declaration)	No. of bits	Attributes	Exception handling	Smallest possible ${ }^{1}$	Largest possible
Integer (short)	16	Seldom used now	None	-2^{15}	$2^{15}-1$
Integer (long)	32	1 sign bit;	None	-2^{31}	$2^{31}-1$
Single precision floating point (real)	32	Seldom used now; 1 sign bit (s); 23 mantissa bits (f); 8 exponent bits (e). Normalized: $x=(-1)^{s} \cdot(1 \cdot f) \cdot 2^{e-127}$ 127 is the "bias".	NaN: $e=255 ; f \neq 0$ INF: $\begin{aligned} & e=255 ; f=0 ; \\ & s=0 \end{aligned}$ NINF: $\begin{aligned} & e=255 ; f=0 ; \\ & s=1 \end{aligned}$	Only by $e: 2^{-126}$ Soft landing: $\begin{aligned} & 2^{-23 .} 2^{-126}=2^{-149} \\ & \cong 1.4 \times 10^{-45} \end{aligned}$	$\begin{gathered} \left(2-2^{-23}\right) \cdot 2^{127} \cong \\ 3.4 \times 10^{38} \end{gathered}$
Double precision floating point (double)	64	1 sign bit (s); 52 mantissa bits (f); 11 exponent bits (e). Normalized: $x=(-1)^{s} \cdot(1 \cdot f) \cdot 2^{e-1023}$ 1023 is the "bias".	NaN: $e=2047 ; f \neq 0$ INF: $\begin{aligned} & e=2047 ; f=0 ; \\ & s=0 \end{aligned}$ NINF: $\begin{aligned} & e=2047 ; f=0 ; \\ & s=1 \end{aligned}$	Only by e : 2^{-1022} Soft landing $\begin{aligned} & 2^{-52} \cdot 2^{-1022}=2^{-} \\ & 1074 \cong 4.9 \times 10^{-324} \end{aligned}$	$\begin{gathered} \left(2-2^{-52}\right) \cdot 2^{1023} \cong \\ 1.8 \times 10^{308} \end{gathered}$

${ }^{1}$ Some bit combinations are used for exception handling. Also, very small number has underflow controls.

Why Precision Matters?

$$
\begin{gathered}
y=f(x)=a x^{2}+b x+c=0 \\
a=10^{-5} ; b=10^{3} ; c=10^{3}
\end{gathered}
$$

With 9 digits of precision

$$
\begin{aligned}
& x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x_{1,2}=\frac{-2 c}{-b \pm \sqrt{b^{2}-4 a c}}
\end{aligned}
$$

$$
x_{1}=-1.0 \text { and } x_{2}=-3.0518 \times 10^{7}
$$

$$
x_{1}=-1.0 \text { and } x_{2}=-3.2768 \times 10^{7}
$$

Group Discussion

\square What does your calculator say by using these two equations?
\square How can you make double precision calculation to show such problems?

Function Conditioning?

We can define a function condition number κ by the sensitivity to perturbation:

$$
\left|\frac{\Delta f}{f}\right| \cong \kappa\left|\frac{\Delta x}{x}\right| \quad \text { or } \quad \kappa=\left|\frac{\Delta f}{\Delta x} \cdot \frac{x}{f}\right|
$$

\square Only one of the possible error sources!

$$
\begin{aligned}
& \left|\frac{f(-1.01)-f(-1)}{0.01 \times\left(\frac{f(-1.01)+f(-1)}{2}\right)}\right|=2.01 \\
& \left|\frac{f\left(-3.0518 \times 10^{7}\right)-f\left(-3.0823 \times 10^{7}\right)}{0.01 \times\left(\frac{f\left(-3.0518 \times 10^{7}\right)+f\left(-3.0518 \times 10^{7}\right)}{2}\right)}\right|=0.55
\end{aligned}
$$

Precision Improvement by Perturbation

The precision error comes from $-b \pm \sqrt{b^{2}-4 a c}$
If we have existing knowledge (or by numerical tests) for this precision issue, we can use the perturbation solution for $4 a c \ll b^{2}$,

$$
\begin{aligned}
x_{1,2}= & \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-b \pm b \sqrt{1-\frac{4 a c}{b^{2}}}}{2 a} \cong \frac{-b \pm b\left(1-\frac{2 a c}{b^{2}}\right)}{2 a} \\
& =-\frac{c}{b} \quad \text { or } \quad-\frac{b}{a}+\frac{c}{b}
\end{aligned}
$$

We now obtain the two roots of -1 and $1-10^{8}$! Check back substitution, $f\left(1-10^{8}\right)=10^{-5}$ and $f\left(-10^{8}\right)=10^{3}$

Much better than $f\left(-3.0518 \times 10^{7}\right)=-2.12 \times 10^{10}$ or $f\left(-3.2768 \times 10^{7}\right)=-2.20 \times 10^{10}$ in terms of residual of $f(x)$!

Ground Truth, Asymptote and Perturbation

\square Do we know the "symbolic" truth? (related to formal verification, then we have 100% proof that some answers are correct)
\square Can we back substitute the answer for validation?
\square Do we know the answer at special points or asymptote? (such as 0, INF and NINF)
\square Can we or do we need to check the sensitivity by perturbation?

Hacker Practice

\square Solve the quadratic equation for $a=10^{-20} ; b=10^{3} ; c=10^{3}$ in your platform.
\square Where is the potential problem in precision?
\square What are the possible ways to detect and compensate the nearly degenerate condition?

