
ECE 4960

Spring 2017

Lecture 2

Numerical Representation and Precision

Edwin C. Kan

School of Electrical and Computer Engineering

Cornell University

Suggested Platform

• Language: C++

• OS: Linux (Debian or Ubuntu); generic platform or

Oracle virtual machine

• Integrated development platform (IDE): code::block or

generic Make with vim or emacs

• Tradeoffs between generic vs. customized platforms

– Long-term evolution

– Cost to the company

– Porting among various platforms

Discussion

• What is your most comfortable platform?

– Language

– OS

– Development environment

Integers and Floating Points in IEEE 754
Data type

(C++ declaration)

No. of bits Attributes Exception

handling

Smallest

possible1

Largest possible

Integer
(short)

16 Seldom used now None 215 215  1

Integer
(long)

32 1 sign bit; None 231 231  1

Single precision

floating point
(real)

32 Seldom used now;

1 sign bit (s);

23 mantissa bits (f);

8 exponent bits (e).

Normalized:

x=(-1)s(1.f)2e-127

127 is the “bias”.

NaN:

e=255; f0

INF:

e=255; f=0;

s=0

NINF:

e=255; f=0;

s=1

Only by e: 2126

Soft landing:

2-232-126 = 2-149

 1.410-45

(2223) 2127 

3.41038

Double precision

floating point
(double)

64 1 sign bit (s);

52 mantissa bits (f);

11 exponent bits (e).

Normalized:

x=(-1)s(1.f)2e-1023

1023 is the “bias”.

NaN:

e=2047; f0

INF:

e=2047; f=0;

s=0

NINF:

e=2047; f=0;

s=1

Only by e:

21022

Soft landing

2-522-1022 = 2-

1074  4.910-324

(2252) 21023 

1.810308

1Some bit combinations are used for exception handling. Also, very small number has underflow controls.

Why Precision Matters?

  02  cbxaxxfy

a

acbb
x

2

42

2,1




acbb

c
x

4

2

2
2,1






a = 10-5; b = 103; c = 103

x1 = 1.0 and x2 = 3.0518107

x1 = 1.0 and x2 = 3.2768107

With 9 digits of precision

Group Discussion

 What does your calculator say by using these two
equations?

 How can you make double precision calculation to
show such problems?

Function Conditioning?

 Only one of the possible error sources!

We can define a function condition number  by the sensitivity
to perturbation:

x

x

f

f 





f

x

x

f





or

   
   

01.2

2

101.1
01.0

101.1









 




ff

ff

   
   

55.0

2

100518.3100518.3
01.0

100823.3100518.3
77

77










 




ff

ff

Precision Improvement by Perturbation

The precision error comes from acbb 42 

If we have existing knowledge (or by numerical tests) for this
precision issue, we can use the perturbation solution for 4ac << b2,

b

c

a

b
or

b

c

a

b

ac
bb

a

b

ac
bb

a

acbb
x





















2

2
1

2

4
1

2

4 222

2,1

We now obtain the two roots of –1 and 1 – 108!
Check back substitution, f(1 – 108) = 10-5 and f(– 108) = 103

Much better than f(3.0518107) = 2.121010 or
f(3.2768107) = 2.201010 in terms of residual of f(x)!

Ground Truth, Asymptote and Perturbation

 Do we know the “symbolic” truth? (related to formal
verification, then we have 100% proof that some answers are
correct)

 Can we back substitute the answer for validation?

 Do we know the answer at special points or asymptote? (such
as 0, INF and NINF)

 Can we or do we need to check the sensitivity by perturbation?

Hacker Practice

 Solve the quadratic equation for a = 10-20; b = 103; c = 103 in
your platform.

 Where is the potential problem in precision?

 What are the possible ways to detect and compensate the
nearly degenerate condition?

