ECE 4960
Spring 2017

Lecture 2

Numerical Representation and Precision

Edwin C. Kan
School of Electrical and Computer Engineering
Cornell University

Suggested Platform

Language: C++
OS: Linux (Debian or Ubuntu); generic platform or
Oracle virtual machine

Integrated development platform (IDE): code::block or
generic Make with vim or emacs

Tradeoffs between generic vs. customized platforms
— Long-term evolution

— Cost to the company

— Porting among various platforms

Discussion

« What is your most comfortable platform?
— Language
— 0OS
— Development environment

Integers and Floating Points in IEEE 754

Data type No. of bits Attributes Exception Smallest Largest possible
(C++ declaration) handling possible?
Integer 16 Seldom used now | None —215 215 -1
(short)
Integer 32 1 sign bit; None —231 231 -1
(long)
Single precision 32 Seldom used now; | NaN: Only by e: 27126 | (2-2-23) .2127 ~
floating point 1 sign bit (s); e=255; =0 3.4x1038
(real) 23 mantissa bits (f); | INF: Soft landing:
8 exponent bits (e). | e=255; f=0; 2-23.2-126 = 9-149
s=0 ~1.4x104%
Normalized: NINF:
x=(-1)s(1.f)-2¢-127 | e=255; f=0;
127 is the “bias”. s=1
Double precision 64 1 sign bit (s); NaN: Only by e: (2—2-52) .21023 ~
floating point 52 mantissa bits (f); | e=2047; f=0 2-1022 1.8x10308
(double) 11 exponent bits (e). | INF:
e=2047; f=0; | Soft landing
Normalized: s=0 2-52.2-1022 = -
x=(-1)s(1.f) 2¢1023 | NINF; 1074 ~ 4,9x 10324
e=2047; f=0;
1023 is the “bias”. |[s=1

1Some bit combinations are used for exception handling.

Also, very small number has underflow controls.

Why Precision Matters?

y=f(x)=ax’ +bx+c=0 \)

a=10°:b=10%c=103 !

With 9 digits of precision

_ —b++b?—4ac

X X, =—1.0 and x, = -3.0518x10’
2a

—2C
_b++/b?—4ac x, =—1.0 and x, = -3.2768x10’

Xio =

Group Discussion

J What does your calculator say by using these two
equations?

J How can you make double precision calculation to
show such problems?

Function Conditioning?

We can define a function condition number x by the sensitivity
to perturbation:

Af NKAX Af X
— | = - K=|—--—
f X or Ax f
J Only one of the possible error sources!
f(~1.01)- f(-1)
=2.01
0 le(f(—1.01g+ f(—l))

f(-3.0518x107)— f(~3.0823x107)

f(-3.0518x107)+ f(-3.0518x10’)J
2

=0.55

O.le(

Precision Improvement by Perturbation

The precision error comes from _bi\/b2 —4ac

If we have existing knowledge (or by numerical tests) for this
precision issue, we can use the perturbation solution for 4ac << b?,

4ac 2ac
b 1-2C _pipl1- %
_btb—dac T PERIT (sz

1,2 o —

2a 2a 2a

We now obtain the two roots of —1 and 1 — 108!
Check back substitution, f(1 — 108) = 10-°and f(— 108) = 103

Much better than f(—3.0518x107) = —2.12x10%° or
f(—3.2768x107) = —2.20x100 in terms of residual of f(X)!

Ground Truth, Asymptote and Perturbation

d

Do we know the “symbolic” truth? (related to formal
verification, then we have 100% proof that some answers are
correct)

Can we back substitute the answer for validation?

Do we know the answer at special points or asymptote? (such
as 0, INF and NINF)

Can we or do we need to check the sensitivity by perturbation?

Hacker Practice

Solve the quadratic equation fora = 102%; b = 103; ¢ = 103 in
your platform.

Where is the potential problem in precision?

What are the possible ways to detect and compensate the
nearly degenerate condition?

