
ECE 4960

Spring 2017

Lecture 1

Class Introduction

Edwin C. Kan

School of Electrical and Computer Engineering

Cornell University

Computational and Software

Engineering

• Robust and verifiable software to interface with the

physical world described by mathematical laws.

Main Applications

 Scientific and engineering problems: simulation; design; testing
 Virtual reality and augmented reality
 Most of these problems are still too large to ignore the

hardware implementation, such as circuit simulation of a chip,
weather simulation, 3D image/geometry processing, etc.

Programming Languages

 Fast-prototype programming vs. Hardware-aware programming

Programmer productivity

Platform independence

Runtime and memory efficiency

System controllability

Python

Matlab

Basic

Java C++ C Fortran

Software Assessment

 In commercial software, developers, instead of users, provide
specification, validation, and test cases.

 Assume responsibilities in defining how to assess your results.
 Overspecification or oversupervision during the training phase

results in immature learners as well as programmers, as shown
in a Chicago mathematical education assessment.

Group Discussion

 How to make it fair to prescribe your own testing
methods for class assignments?

This class is NOT… (1)

 Not a class to teach fundamental program skills: You are
expected to have substantial programming experience in a high-
level, object-oriented language.

 Although you are allowed to use any language and developer
platform of your choice, Gnu C++ will be most often used as
programming practice examples.

 Programming techniques such as sorting and tree trasversing
are taught in basic data structure classes, and are implicitly
assumed.

This class is NOT… (2)

 Not a mathematical class to prove convergence or error bounds,
although concepts for testing and verification will be reviewed
when needed.

 Not a class to focus on Internet or Cloud computing
environment where programmer productivity and machine
compatibility from virtual wrappers are emphasized.

 Not an operating system or compiler class to deal with system
setup and resource allocation, although you will gain some
practical knowledge of the system. Detailed knowledge of
compilers and operating systems belongs to other courses..

Syllabus

 See handout.

Group Discussion

 What is the most important ONE thing you hope to
learn in this class?

Source of Errors in Software

 Murphy’s Law: “Anything that can go wrong, will go wrong.”

 Yhprum’s Law: “Anything that can go wrong, will go right.” (Or
Chinese saying: “The path will become straight after you make
the turn.” “The boat can go straight after passing the bridge.”

 Murphy’s Law for things with complexity: “If one thing goes
wrong, everything else will, and at the same time”

Bugs, Bugs, Bugs

 Logic errors

 Coding errors

 Approximation and
convergence errors

 Conversion errors

 Memory errors

 Memory and resource leaks

 Multi-threaded or race
errors

 Timing errors

 Distributed application
errors

 Storage errors

 Procedure integration errors

 Version errors and backward
compatibility

Will cover in this class Will NOT cover in this class

Discussion

 What is your most vivid experience in programming
errors?

