ECE 4960 Spring 2017: Computational and Software Engineering Homework 2: Differentiation in Local Analysis Due 2/10 after class

Document your programming environment: Language; development platform; operating system Prob. 1. (Quadratic function): For $f(x) = x^2$, we know the exact f'(x=1) = 2.

- 1.1 Use Eq. (1) below to estimate f'(x=1) varying the value of h from 0.1 to 10^{-18} to observe the relative error in calculating f'(x). Tabulate your results with sufficient precision in a table.
- 1.2 Repeat your calculation with $f(x) = x^2 + 10^8$. Add your results to the same table.
- 1.3 Repeat the above two procedure by using Eq. (2). Add your results to the same table.

$$f'(x) = \frac{f(x+h) - f(x)}{h} + O(h)$$
(1)
$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$
(2)

h	Error in $f'(x=1)$ by Eq.	Error in $f'(x=1)$ by Eq.	Error in $f'(x=1)$ by Eq.	Error in $f'(x=1)$ by Eq.
	(1) where $f(x) = x^2$	(1) where $f(x) = x^2 + 10^8$	(2) where $f(x) = x^2$	(2) where $f(x) = x^2 + 10^8$
10-1	0.1	0.1	Close to 10 ⁻¹⁶	Close to 10 ⁻⁸
10-2	0.01	Around 0.01	Close to 10 ⁻¹⁵	Close to 10 ⁻⁷
10-3	0.001	Around 0.001	Close to 10 ⁻¹⁴	Close to 10 ⁻⁶
	Decreasing and	Decreasing and	Increasing always due	Increasing always due
	starting to increase	starting to increase	to precision pollution	to precision pollution
	around 10 ⁻⁸	around 10 ⁻⁴		
10 ⁻¹⁷	2.0 or NaN	2.0 or NaN	2.0 or NaN	2.0 or NaN
10 ⁻¹⁸	2.0 or NaN	2.0 or NaN	2.0 or NaN	2.0 or NaN

Prob. 2. (Cubic function): For $f(x) = x^3$, we know the exact f'(x=1) = 3.

- 2.1 Use Eqs. (3) (5) below to estimate f'(x=1) varying the value of *h* from 2⁻⁴ to 2⁻²⁰ to observe the relative error in calculating f'(x). Tabulate your results with sufficient precision in a table.
- 2.2 Estimate η from Eqs. (6) and (7) for each choice of *h*. Add your results to the same table.

$$f'(x) = \frac{f(x+h) - f(x)}{h} + E(h); \quad E(h) = O(h) = \frac{1}{2}hf''(x) + O(h^2)$$
(3)

$$f'(x) = \frac{f(x+2h) - f(x)}{2h} + E(2h); \qquad E(2h) = O(h) = \frac{1}{2}2hf''(x) + O(h^2)$$
(4)

$$f'(x) = \frac{-1}{2h} f(x+2h) - \frac{3}{2h} f(x) + \frac{2}{h} f(x+h) + O(h^2)$$
(5)

$$R(h) \equiv \frac{E(2h)}{E(h)} \cong \eta \tag{6}$$

$$R(h) \cong \frac{\hat{A}(4h) - \hat{A}(2h)}{\hat{A}(2h) - \hat{A}(h)} \cong \eta$$
⁽⁷⁾

h	Error in $f'(x=l)$ by	Error in $f'(x=l)$ by	Error in $f'(x=1)$ by	η by Eq. (6)	η by Eq. (7)
	Eq. (3)	Eq. (4)	Eq. (5)		
10-4	6×10 ⁻⁴	1.2×10 ⁻³	8.0×10 ⁻⁸	2.0	2.0
10-5	6×10 ⁻⁵	1.2×10 ⁻⁴	8.0×10 ⁻¹⁰	2.0	2.0
10-6	6×10 ⁻⁶	1.2×10 ⁻⁵	~ 2.0 ×10 ⁻³	2.0	2.0
	Decreasing until around 10 ⁻⁸ then start increasing due to loss in precision	Decreasing until around 10 ⁻⁸ then start increasing due to loss in precision	Start increasing due to loss in precision	Start deviating from 2.0 around 10 ⁻⁸	Start deviating from 2.0 around 10 ⁻⁸
10-19	3.0 or NaN	3.0 or NaN	3.0 or NaN	1.0	1.0 or NaN
10 ⁻²⁰	3.0 or NaN	3.0 or NaN	3.0 or NaN	1.0	1.0 or NaN

Note that I change the decrease rate of h to show larger range here. 4h, 2h and h are still evaluated for each row below.

This table is just for illustration of the precision behavior. The answer will be precision, implementation and platform dependent!