ECE 4960 Spring 2017: Computational and Software Engineering
 Homework 2: Differentiation in Local Analysis
 Due $2 / 10$ after class

Document your programming environment: Language; development platform; operating system
Prob. 1. (Quadratic function): For $f(x)=x^{2}$, we know the exact $f^{\prime}(x=1)=2$.
1.1 Use Eq. (1) below to estimate $f^{\prime}(x=1)$ varying the value of h from 0.1 to 10^{-18} to observe the relative error in calculating $f^{\prime}(x)$. Tabulate your results with sufficient precision in a table.
1.2 Repeat your calculation with $f(x)=x^{2}+10^{8}$. Add your results to the same table
1.3 Repeat the above two procedure by using Eq. (2). Add your results to the same table.

$$
\begin{align*}
& f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}+O(h) \tag{1}\\
& f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}+O\left(h^{2}\right) \tag{2}
\end{align*}
$$

h	Error in $f^{\prime}(x=1)$ by Eq. (1) where $f(x)=x^{2}$	Error in $f^{\prime}(x=1)$ by Eq. (1) where $f(x)=x^{2}+10^{8}$	Error in $f^{\prime}(x=1)$ by Eq. (2) where $f(x)=x^{2}$	Error in $f^{\prime}(x=1)$ by Eq. (2) where $f(x)=x^{2}+10^{8}$
10^{-1}	0.1	0.1	Close to 10^{-16}	Close to 10^{-8}
10^{-2}	$\mathbf{0 . 0 1}$	Around 0.01	Close to 10^{-15}	Close to 10^{-7}
10^{-3}	$\mathbf{0 . 0 0 1}$	Around 0.001	Close to 10^{-14}	Close to 10^{-6}
\ldots	Decreasing and starting to increase around 10^{-8}	Decreasing and starting to increase around 10^{-4}	Increasing always due to precision pollution	Increasing always due to precision pollution
10^{-17}	$\mathbf{2 . 0}$ or NaN	$\mathbf{2 . 0}$ or NaN	$\mathbf{2 . 0}$ or NaN	$\mathbf{2 . 0 \text { or NaN }}$
10^{-18}	$\mathbf{2 . 0}$ or $\mathbf{N a N}$	$\mathbf{2 . 0}$ or $\mathbf{N a N}$	$\mathbf{2 . 0}$ or $\mathbf{N a N}$	$\mathbf{2 . 0}$ or NaN

Prob. 2. (Cubic function): For $f(x)=x^{3}$, we know the exact $f^{\prime}(x=1)=3$.
2.1 Use Eqs. (3) - (5) below to estimate $f^{\prime}(x=1)$ varying the value of h from 2^{-4} to 2^{-20} to observe the relative error in calculating $f^{\prime}(x)$. Tabulate your results with sufficient precision in a table.
2.2 Estimate η from Eqs. (6) and (7) for each choice of h. Add your results to the same table.

$$
\begin{align*}
& f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}+E(h) ; \quad E(h)=O(h)=\frac{1}{2} h f^{\prime}(x)+O\left(h^{2}\right) \tag{3}\\
& f^{\prime}(x)=\frac{f(x+2 h)-f(x)}{2 h}+E(2 h) ; \quad E(2 h)=O(h)=\frac{1}{2} 2 h f^{\prime \prime}(x)+O\left(h^{2}\right) \tag{4}\\
& f^{\prime}(x)=\frac{-1}{2 h} f(x+2 h)-\frac{3}{2 h} f(x)+\frac{2}{h} f(x+h)+O\left(h^{2}\right) \tag{5}\\
& R(h) \equiv \frac{E(2 h)}{E(h)} \cong \eta \tag{6}\\
& R(h) \cong \frac{\hat{A}(4 h)-\hat{A}(2 h)}{\hat{A}(2 h)-\hat{A}(h)} \cong \eta \tag{7}
\end{align*}
$$

Note that I change the decrease rate of h to show larger range here. $4 h, 2 h$ and h are still evaluated for each row below.

h	Error in $f^{\prime}(x=1)$ by Eq. (3)	Error in $f^{\prime}(x=1)$ by Eq. (4)	$\begin{gathered} \text { Error in } f^{\prime}(x=1) \text { by } \\ \text { Eq. (5) } \\ \hline \end{gathered}$	η by Eq. (6)	η by Eq. (7)
10^{-4}	6×10^{-4}	1.2×10^{-3}	8.0×10^{-8}	2.0	2.0
10^{-5}	6×10^{-5}	1.2×10^{-4}	8.0×10^{-10}	2.0	2.0
10^{-6}	6×10^{-6}	1.2×10^{-5}	$\sim 2.0 \times 10^{-3}$	2.0	2.0
\cdots	Decreasing until around 10^{-8} then start increasing due to loss in precision	Decreasing until around 10^{-8} then start increasing due to loss in precision	Start increasing due to loss in precision	Start deviating from 2.0 around 10^{-8}	Start deviating from 2.0 around 10^{-8}
10^{-19}	3.0 or NaN	3.0 or NaN	3.0 or NaN	1.0	1.0 or NaN
10^{-20}	3.0 or NaN	3.0 or NaN	3.0 or NaN	1.0	1.0 or NaN

This table is just for illustration of the precision behavior. The answer will be precision, implementation and platform dependent!

