ECE 4960 Spring 2017: Computational and Software Engineering Homework 2: Differentiation in Local Analysis Due 2/10 after class

Document your programming environment: Language; development platform; operating system Prob. 1. (Quadratic function): For $f(x) = x^2$, we know the exact f'(x=1) = 2.

- 1.1 Use Eq. (1) below to estimate f'(x=1) varying the value of h from 0.1 to 10^{-18} to observe the relative error in calculating f'(x). Tabulate your results with sufficient precision in a table.
- 1.2 Repeat your calculation with $f(x) = x^2 + 10^8$. Add your results to the same table.
- 1.3 Repeat the above two procedure by using Eq. (2). Add your results to the same table.

$$f'(x) = \frac{f(x+h) - f(x)}{h} + O(h)$$
(1)
$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$
(2)

h	Error in $f'(x=1)$ by Eq.	Error in $f'(x=1)$ by Eq.	Error in $f'(x=1)$ by Eq.	Error in $f'(x=1)$ by Eq.
	(1) where $f(x) = x^2$	(1) where $f(x) = x^2 + 10^8$	(2) where $f(x) = x^2$	(2) where $f(x) = x^2 + 10^8$
10^{-1}				
10 ⁻²				
10 ⁻³				
10 ⁻¹⁸				

Prob. 2. (Cubic function): For $f(x) = x^3$, we know the exact f'(x=1) = 3.

- 2.1 Use Eqs. (3) (5) below to estimate f'(x=1) varying the value of h from 2⁻⁴ to 2⁻²⁰ to observe the relative error in calculating f'(x). Tabulate your results with sufficient precision in a table.
- 2.2 Estimate η from Eqs. (6) and (7) for each choice of *h*. Add your results to the same table.

$$f'(x) = \frac{f(x+h) - f(x)}{h} + E(h); \qquad E(h) = O(h) = \frac{1}{2}hf''(x) + O(h^2)$$
(3)

$$f'(x) = \frac{f(x+2h) - f(x)}{2h} + E(2h); \qquad E(2h) = O(h) = \frac{1}{2}2hf''(x) + O(h^2)$$
(4)

$$f'(x) = \frac{-1}{2h} f(x+2h) - \frac{3}{2h} f(x) + \frac{2}{h} f(x+h) + O(h^2)$$
(5)

$$R(h) = \frac{E(2h)}{E(h)} \cong \eta \tag{6}$$

$$R(h) \cong \frac{\hat{A}(4h) - \hat{A}(2h)}{\hat{A}(2h) - \hat{A}(h)} \cong \eta$$
(7)

h	Error in $f'(x=1)$ by	Error in $f'(x=1)$ by	Error in $f'(x=1)$ by	η by Eq. (6)	η by Eq. (7)
	Eq. (3)	Eq. (4)	Eq. (5)		
2-4					
2-5					
2-6					
2-20					