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ECE 4960: Computational and Software Engineering 

 
Spring 2017 

 
Note 6: Ordinary Differential Equation    

 

 
Reading Assignments: 

 

1. Chapters 22 and 23, Charpa. 

 

1. Class logistics 

 

 Programming assisgnment 4 

 Reading reviews 5 and 6 (will be multiple choice questions on Blackboard) 

 

2. Comparison of Local Analysis and Ordinary Differential Equation (ODE) 

 

Ordinary differential equations (ODE) render the fundamental descriptions for many behavioral (such as 

financial analysis, item testing, etc.) and topological (such as circuits and pseudo-rigid-body motion) 

models in science and engineering.  The general form in the multi-variable case can be written as: 
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Notice here we have x


(t) as the dependent variable as a vector of rank n and f


as the functions that 

describes the relation of x


 and t to the time derivative of x


.  f


 is also often a vector of rank n, but we 

do not depend on the same rank to give a well-posed problem.   The time t is the only “independent” 

variable here, which makes the differential equation “ordinary”.  If the spatial coordinates (x, y, z) are also 

independent variables, i.e., we can have partial derivatives in space and time, the differential equation will 

be called “partial”, which has very different nature from ODE.  The most obvious difference between the 

partial differential equation (PDE) and ODE is that only the first order ODE is important, as for any 

higher order derivatives, we can add more variables to transfer the higher order derivatives to the first 

order, such as: 
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This operation is not possible for PDE, where we have to study the different orders in the PDE system 

(such as parabolic, elliptical, KdV, etc.) 

 

An example of ODE can be an RC low pass circuits in Fig. 1 that you are familiar with: 
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Notice how the derivative of V(t) depends on a function of f(V, t).  The solution of interest will be V(t), as 

a function of V(t = 0) and Iin(t).  This is in general called the “initial-value problems”. There are two 

parts in f(V, t), one depends on the dependent variable V explicitly, which is called the homogeneous part 

as in any differential equation, and the other on the independent variable t through i(t), which is called the 

inhomogeneous part.   

 

Another possible example is to describe the free fall of an object.  Notice that we treat this object as a 

pseudo-rigid body, so the description is refered to its center of mass by: 
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where g is the gravitational acceleration, m is the mass and cd the drag coefficient of air.  The solution will 

be v(t), given an initial condition of v(t = 0).  The last example is the harmonic oscillator with damping 

from a friction coefficient of c: 
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After transforming dx/dt to v, we have a pair of ODE: 
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We can see Eqs. (3), (4), and (6) all fit the general ODE form in Eq. (1)1.  We need to know  0tx


 to 

obtain the transient solution of ODE of  tx


 for each dependent variable.  For Eq. (6), it is equivalent to 

say that we need to know x(t=0) and v(t=0), or x(t=0) and x’(t=0).  Higher-order time derivatives and the 

associated boundary conditions can be viewed accordingly. 

 

We notice that the discretization of the first-order derivatives will be similar to what we have learned in 

the local analysis.  For the first-order precision, we can opt to use two points in t: 
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1 Also notice now the ODE system is entirely homogeneous, i.e., the right hand side has only dependent variables. 
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Fig. 1. Simple 

RC circuits to 

illustrate ODE 

and SPICE 

solution. 
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This is similar to the Euler method introduced below. Recall that for the knowledge of three points in t, 

we can approximate the first derivative to the second order precision according to the Taylor expansion 

by two (or multiple) time steps, as in Eqs. (3 – 6) in Note 3, which is repeated below as Eqs. (9 – 11): 
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This is similar to the Runge-Kutta method in the second order, which will be introduced later.   

 

For time derivative in local approximation, the truncation (at what orders of h the derivative is accurate) 

and roundoff (floating-point precision limitation) errors are very similar to general local analysis.  

However, derivatives in time have several unique properties from spatial or parametrical derivatives: 

 

1. Errors in previous time steps are accumulated unless the history is re-visited: In Fig. 1, we can 

see that if the present solution has an error to shift to the trajectory of another solution of different 

V(t=0), the later time steps will follow the new trajectory, unless the previous history points are 

revisited.  This feature can be observed in the standard solution of Fig. 1 for Iin(t) = 0 with V(t) 

goes to an exponential decay from V(t=0).  The analytical solution is: 
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We can observe that the integration constant C (appears in every integration of the first 

derivative) will match to V(0), but will cause accumulation of errors in time progression. 

 

2. Any physical laws that contain the correct thermodynamics should have time irreversibility, and 

therefore, forward and backward discretization will make a difference in its trajectory. 

 

3. The One-Step Methods 

 

If we only use one point in history, this is called the one-step method, in contrast to the multi-step method 

in the next chapter.  From Eq. (1), the one-step method can be in general expressed in a time progression 

stamp of i as: 
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where h is the time step (or t in some text) and  is called the incremental function.  The time 

progression in i will approximate the solution  tx


 with given initial condition.  We have different ways 

to evaluate  in the discrete time steps according to Eq. (1). 

 

3.1 Euler’s method 

 

The Euler method evaluates  by the first-order approximation of the time derivative.  Observe the Taylor 

expansion of Eq. (13): 
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There are three common choices to evaluate dx/dt: 

 

1.  Forward Euler:  ii

tt

txf
dt

dx

i

,


  

 

2.  Backward Euler:  11,

1









ii

tt

txf
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dx

i

  

 

3.  Trapezoidal Euler: 
   

2

,, 11 
 iiii txftxf

  

 

For sure other different weighting of f(xi, ti) and f(xi+1, ti+1) to evaluate dx/dt is possible, which we will 

introduce in Sec. 3.2.  Forward and backward Euler methods are O(h) accurate, while the trapedzoidal 

Euler is O(h2) accurate, due to the cancellation of the d2x/dt2 term as well, similar to the central difference 

in the local analysis.  We will use a most popular example to illustrate the difference in the three Euler 

methods, which is also used for stability testing.  Then we will generalize the approximation to the 

Huen’s and Runge-Kutta methods. 

 

Example 1:  
 

For the ODE ax
dt

dx
 with a > 0, we know the analytical solution is: x = x0e

-at, which decays in time.  

We will test this system in the three Euler’s methods: 

 

1.  Forward Euler:   iiii xahahxxx  11 .  The solution is a geometric series: 

  01 xahx
n

n  . We can see that x will decay in time only if |1 – ah| < 1.  We call this 

“conditionally stable”, as the system stablility depends on the choice of h.  Remember that this is 

only valid for the simple ODE here.  In multi-variable and nonlinear cases, system stability can be 

more complicated. 
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2.  Backward Euler: iiiii x
ah

xahxxx
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1
; 111 .  The solution is a geometric series: 
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 . We can see that x will decay in time regardless of the choice of h (remember 

a > 0 and h> 0).  We call this “unconditionally stable” or A-stable (Absolute stable)2, as the 

system stablility does not depend on the choice of h.   

 

3.  Trapedzoidal Euler: ii
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 . This is also unconditionally stable for the simple stability 

testing ODE here. 

 

 

 

Exercise: 

 

For  the period of time of l where N time steps will be applied, i.e., h = l/N, prove that the forward, back 

and trapezoidal Euler methods all converge to the solution of x = x0e
-al when N.  
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Therefore,   alN

N
exahx 


 00 1lim .  The above step has used the L’Hospital rule in the infinite series. 

 

 
 

Example 1 is often referred as the stability test of any ODE solution method.  More texts use the sample 

problem of ax
dt

dx
 , where the convergent series will require Re(a) < 0 (the left plane has no pole in the 

control theory).  System stability can be a generalized form for this test problem if the system is described 

by multi-variable ODE.   

 

3.2 The predictor-corrector method (Huen’s method) 

 

After we observe the second-order trapezoidal Euler method, we hope to do the best we can in the 

estimation of the incremental function  within the given time steps.   Notice the information at ti, i.e., 

f(xi, ti) is already available from the previous time step (in most applications, the time progression, 

evaluation of f(x,t) is the most expensive step in the multi-variable case), so we will definitely use it as 

                                                 
2 A-stability is defined for the given test problem where a can be a complex number with a positive real part.  If a 

method is A-stable, it will converge to 0 when t . 
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part of the incremental function.  Instead of just using the discretized point ti+1 for f(xi+1, ti+1) to evaluate 

dx/dt, can we use the estimated slope to obtain an intermediate point, and iteratively use that intermediate 

point to make an even better estimation of dx/dt?  This is the idea behind the predictor (use the current 

information at hand to predict an intermediate point) and corrector (use the new estimated dx/dt to make 

correction to xi).  This is called the Huen’s3 method. 

 

The Huen’s predictor-corrector method without iteration can be expressed as: 
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This is illustrated in Fig. 2.  We have purposedly used a new symbol 
0
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j

i xx directly, we 

can see this is just the trapezoidal Euler formation.   

 

 
 

However, the predictor-corrector method can be iterative for further improvement, by generalizing Eq. 

(14) to an iteration with respect to j, and the general form of the predictor-corrector method can be 

expressed as: 
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The iteration will stop at the criteria: 
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Example 2:  

 

                                                 
3 The predictor-corrector method is developed by Karl Huen around 1900’s, when the ODE solution for cannon 

projectile is a matter of life and death.  Karl Huen, Carl Runge and Martin Kutta and are all mathematicians in 

Germany at the time.  I guess you can see why their artillery and tank units were the best for quite a long time. 

Predictor Corrector 

Fig. 2. The predictor-corrector method without iteration. 
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For the ODE of xe
dt

dx t 5.04 8.0  , the exact solution for x(0) = 2 is:     ttt eeetx 5.05.08.0 2
3.1

4   .  

The computation by the forward Euler method, the Huen’s method without iteration (trapezoidal) and the 

Huen’s method with iteration (using tol = 10-7) is summarized in Table 1. 

 

Table 1. Example of the one-step methods for ODE solution: 

t xtrue xforwardEuler |x| (%) xHuen (no iter.) |x| (%) xHuen (iter.) |x| (%) 

0 2.0000 2.0000  2.0000  2.0000  

1 6.1946 5.0000 19.28 6.7011 8.18 6.3609 2.68 

2 14.843 11.402 23.19 16.320 9.94 15.302 3.09 

3 33.677 25.513 24.24 37.199 10.46 34.743 3.17 

4 75.339 56.849 24.54 83.34 10.62 77.735 3.18 

 

 
 

We can make some observation on Table 1.  First, |x| usually deteriorates when time progresses due to 

error accumulation, but this may be affected by the size of time steps.  Second, the Huen’s method 

without iteration (trapezoidal Euler) improves the solution, but not by much.  The Huen’s method with 

iteration makes significant accuracy improvement by the most information available at ti and ti+1.  

However, there are also a few nonideal features in the predictor-corrector method with iteration: 

 

1. In each j iteration,   11,  i

j

i txf  has to be re-evaluated due to the new values of 
j

ix 1 .  In many 

real cases with multiple variables, this is computationally expensive. 

 

2. We do not know the number of iterations before convergence, and we have no obvious bound or 

strict proof of the order of accuracy.  This is not ideal for debugging and validation.  If we know 

the precise accuracy, by testing the time steps with 4h, 2h and h, we can know whether our 

software implementation is correct from external observation, similar to the Richardson 

extrapolation in the local analysis. 

 

3. As we are calculating 
j

ix 1  anyway, there is NO reason to insist that t has to be ti+1 every time.  

From Eq. (11), we know if we relax this constraint to evaluate f at different time points between ti 

and ti+1, we can improve the order of accuracy in the deterministic manner. 

 

Just from the limitation 3, we can already devise a new method called the midpoint method by estimate 

the incremental function  at ti+1/2 as illustrated in Fig. 3, i.e.,  

 

 htxfxx iiii 2/12/11 ,       (17) 

 

This is very similar to the midpoint evaluation in the integration approximation in the local analysis, and 

also has a second-order accuracy.  We can see that relaxation of the time point for evaluation can improve 

the accuracy.  The midpoint analysis however requires evaluating f(t, x) at a new time instance in 

comparison with Huen’s method without iteration or trapezoidal Euler.  All these one-step methods do 

not generate a new spatial solution x(t) at ti+1/2. 
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The general method to resolve all three limitations of the predictor-corrector method but keeping its main 

advantages is included in the adaptive-order Runge-Kutta method, as presented in the next section. 

 

3.3 The Runge-Kutta method within a time interval of fixed h 

 

Following the spirit of Eq. (11), we can write down the estimation of the incremental function  as a 

linear combination as evaluation of f(x, t).  This is the Runge-Kutta method of arbitrary order.  We do not 

know now what the parameters should be that can make the best approximation, but we will later match 

them with the Taylor expansion, just like the derivation of Eq. (11) in the local analysis. 

 

In the Runge Kutta method of order n, the incremental function is expressed as: 

 

nnkakaka  ...2211      (18) 

 

where kj with j = 1…n is the estimation of f(t, x) between the interval of (ti, ti+1), and iteratively defined 

(i.e., kj will depend on k1, … kj-1, in the iterative spirit of the Huen’s method).  The parameter aj is 

unknown now, but will later be determined by matching with the Taylor series.  Notice that we exchange 

the order of x and t in the expression of f for convenience and clarity, as the choice of x will depend on 

previous kj and t.  The slope function kj for j = 1…n between ti and ti+1 is defined as: 
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where p and q are all constants between [0, 1] to be chosen to match with the Taylor series expansion in 

the n-th order.  The slope function kj will be the evaluation of f at some t in [ti, ti+1] and x in [xi, xi+1], and 

is iteratively defined but does not need internal iternations as in the predictor-corrector method. 

 

Before we go on, we will look at two of the simplest cases of n = 1 and n = 2 in the Runge-Kutta series.  

For n = 1, only k1 exists, and no p or q is needed, we retrieve the forward Euler method by choosing a1 = 

1!  For n = 2, we have: 

 

Evaluation of  at the midpoint Corrector 

Fig. 3. The midpoint one-step method. 
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We have FOUR parameters of a1, a2, p1 and q11 to determine from the Talyor expansion series, which can 

be expressed as: 
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We know the Taylor expansion of k2 will be: 
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Therefore, Eq. (20) can be written as: 
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By matching Eqs. (21) and (23), we obtain the following condition for the 2nd-order Runge-Kutta 

expansion as: 
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There are three conditions for the four parameters of a1, a2, p1 and q11 , which means we will have an 

additional degree of freedom to choose the parameters and still maintain 2nd-order accuracy for all choices 

as long as Eq. (24) is satisfied.  The choice is either for proof of concepts, or more often, for 

computational efficiency in error estimation or in the future multi-step methods (which will come in the 

next section). 

 

Let’s look at several interesting choices.  If we choose a2 = 0.5, we have a1 = 0.5, p1 = q11 = 1, and Eq. 

(20) becomes: 

 

   hhkxhtfhxtfxx iiiiii 11 ,
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which is exactly the Huen’s method without iteration.  If we choose a2 = 1, we have a1 = 0, p1 = q11 = 0.5, 

and Eq. (20) now becomes: 
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which is exactly the midpoint method in Eq. (17)!  We know that both cases are 2nd-order accurate.  

Actually you can choose a2 = 2/3 or 2/3  for different purposes and still remain 2nd-order accuracy. 

 

Now you know the spirit of the Runge-Kutta expansion, we will omit the lengthy algebraic derivation 

here.  The Runge Kutta method can be of any order, and it can be seen as an universal expression for the 

one-step ODE time discretization scheme from any given closed form.  The Runge Kutta method has not 

only inherited the iterative refinement nature in the predictor-corrector method, but also offers a known 

order of accuracy in its various forms.   

 

The Runge Kutta method can give an internal error estimation between two different orders, which can 

be used to evaluate whether the present time step size is appropriate. This is a very important feature in hp 

adaptivity, which we will revisit very soon.  Notice that there is a free parameter to choose, which greatly 

expands its flexibility and computational efficiency by aligning internal points of [ti, ti+1] in different 

orders to minimize the number of evaluation of f(t, x) in each time step.   

 

A popular choice in the fourth-order Runge-Kutta has the following formula: 
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Please notice how kj depends on kj-1 in Eq. (27), which is expressed in Fig. 4.  We have here a1 = 1/6, a2 = 

2/6, a3 = 2/6 and a4 = 1/6.  Also, p1 = ½, p2 = ½, p3 = 1, q11 = ½, q22 = ½ and q33 = 1.  As k3 only depends 

on k2, not k1; k4 only on k3, not on k2 and k1, we have q21 = q31 = q32 = 0.  The choice of qij this way is a 

convenient feature, but not a required necessity. 
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Exercise: Show that the parameter choices in Eq. (27) matches the Taylor series expansion up to the 

fourth order. 

 

From Eq. (21), we will show the match in the first order (one term before  ii xtf , ) and the second order 
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Notice in the present choice of k2, k3 and k4, we have q21 = q31 = q32 = 0. 

 

The third order term has three conditions of 
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Example 3.  Following Table 1, if we use the 4th-order Runge Kutta, we will have the following 

computation for the ODE of xe
dt

dx t 5.04 8.0  , with the exact solution for x(0) = 2 as: 

    ttt eeetx 5.05.08.0 2
3.1

4   . 

 

Table 2. Fourth-order Runge Kutta calculation: 

t xtrue k1 k2 k3 k4 xRK4 |x| (%) 

0 2.0000   2.0000  2.0000  

1 6.1946 3.0000 4.2173 3.9130 5.9457 6.2010 0.103 

 

Fig. 4. The 4th-order Runge Kutta method in one time step. 
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We can see how the 4th-order Runge Kutta behaves much better than any other methods of forward Euler, 

trapezoidal Euler and even the predictor-corrector with iterations in this example! 

 

 
 

Before we close on the Runge Kutta method, we will make one further observation on stability, as defined 

in Example 1.  We have seen that the back Euler method is “A-stable”, as the solution will converge to 0 

for the test problem of ax
dt

dx
  with a > 0 and any choice of h.  The Runge Kutta method for the test 

problem can be generally expressed as: 
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The Runge Kutta method will be A-stable if   1ha .  On top of A-stability, the Runge Kutta method 

(as well as the backward Euler)  is said to be L-stable for   0lim 


ha
ha

 , i.e., with the choice of 

1;
1

 m
a

h
m

, the Runge Kutta method can converge in ONE step!  The L-stable adaptive Runge Kutta 

method is most appropriate for the system with high stiffness. 

 

4. The Adaptive Runge Kutta Method for Stiff Systems 

 

Up to now we have not treated the choice of step size.  For a “stiff system”4 with multiple time constants 

of very different magnitudes.  This is especially true for digital and RF circuit systems.  In the digital 

system, when a circuit node is in a “0” or “1” state, it can remain there indefinitely (with the clock signal 

as an exception). If the time step h is very small in this state, not only it would waste a lot of computation 

doing nothing (nothing has happened), but the round-off errors will accumulate indefinitely.  However, 

during a transition, it is important to capture the voltage transient waveforms accurately with much 

smaller time step h so that the short-circuit power can be estimated.  If h is large during the transition, we 

may miss the whole ball game!  In the RF system, the base data band often has a much lower frequency 

than the carrier frequency (or you would have a very large antenna or one person hogging the entire 

spectrum).  The time-domain electromagnetic effects by default form a stiff system (hopefully not a 

chaotic system).  

 

Surely for a large stiff system, there is NO way we can choose the time step manually.  We cannot rely 

solely on the transient external condition either (although the external time dependence of 4e0.8t in 

Examples 2 and 3 has to be reasonably resolved to be close to the true solution), as the internal node can 

have a fast transition even when the external time stimulus is slow due to the nonlinearity in the system, 

such as the turning-on of a diode or transistor where the current changes exponentially.  We do not have 

the luxury here to treat the formal definition of system stiffness through the eigenvalues in Eq. (1), but 

have to resort to more intuitive ways of thinking. 

 

The first intuitive way for adaptive time stepping is to evaluate h/2 and 2h, together with the present time 

step h. However, not only we have to pay three times the execution time, but also the error estimation is 

                                                 
4 The definition of system stiffness, as put by J. D. Lambert, is “If a numerical method with a finite region of A-

stability, applied to a system with any given initial conditions, is forced to use a certain interval of integration step 

length which is excessively small in relation to the smoothness of the exact solution in that interval, then the system 

is said to be stiff in that interval.  (Sorry that mathematicians use very long sentences to be precise). 
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rather risky since we generally have no idea about the true solution at the present state.  Do not get me 

wrong, during debugging of your software, this still offers a helpful clue as in the Richardson 

extrapolation.  Can we have a more efficient way of error estimation within the present time step?  The 

answer lies in the difference of two order-of-accuracy Runge Kutta discretization. Different order of 

accuracy means p adaptive in the hp adaptivity, and it is a generally good practice that we use both, and 

particularly good if we “use p to evaluate h”5!  Not only this will relieve the requirement of some 

knowledge about the true solution, but also it can be very computationally efficient, as illustrated in the 

adaptive Runge Kutta method, or so-called “embedded Runge Kutta”. 

 

4.1 The adaptive Runge Kutta methods by different orders 

 

We will use an example to illustrate the error estimation in the adaptive Runge Kutta method.  By 

choosing a 3rd-order Runge Kutta discretization as: 
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    (29) 

 

This will be the main time stepping scheme to update xi+1 from xi.  Notice that in the Runge Kutta method, 

to match with the first-order term from the Taylor series, we will have  
j

ja 1, similar to Eq. (24).  

Now we will formulate a 4th-order Runge Kutta discretization as aligned as possible at kj to the 3rd-order 

in Eq. (29) by: 
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    (30) 

 

Notice how k1 – k3 are aligned to save the computational cost of evaluating f at different instance of the 

time interval [ti, ti+1].  This is made possible as we have one parameter of free choice in each Runge Kutta 

expression!  We can now write the error estimator from the difference of Eqs. (29) and (30): 

 

                                                 
5 In the circuit simulation and electrostatic problems, actually we more often use hp to evaluate/choose h in the 

universal expression of Runge Kutta, but this will require a multi-step method in the next section.  The popular TR-

BDF2 method in SPICE belongs to this category. 
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 hkkkkxxE thirdii 43214,13,11 9865
72

1
     (31) 

 

The best thing of this error estimator is: it is almost computationally FREE in terms of evaluation of f!  

We need to calculate for k1 – k3 for the regular time step in Eq. (29), and k4 can be re-used for the next 

time step.  The linear combination of kj in Eq. (31) is often fast and does not involve any nonlinear 

functions! 

 

Exercise: Show that the parameter choices in Eq. (29) match the Taylor series expansion up to the third 

order and those in Eq. (30) match the Taylor series expansion to the fourth order. 

 

 
j

ja 1 for matching the term before  f(ti, xi), which is true for both Eqs. (29) and (30). 
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of Eq. (29): 
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223112  qaqa .  Notice that this is the same 

calculation because q21 = 0. 
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 of Eq. (30) is the same as q21 = q31 = q32 = 0. 

 

You can derive the rest orders for the match. 

 

 
 

Now we have calculated the error estimator for the present choice of h from adaptive p in the Runge 

Kutta expression.  We can evaluate a norm of ||Ei+1|| against a norm of ||xi+1|| for a possible adaptive time 

stepping scheme: 

 

1. If 1
1

1
Tol

x
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i
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, refine h to h/2. 

 

2. If 2
1

1
Tol

x

E

i
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, extend h to 2h. 

 

3. If 12
1

1
Tol

x

E
Tol

i

i





, keep the present choice of h. 

 

Typical values of Tol1 and Tol2 are 10-1 and 10-3, respectively, depending on the precision of the floating 

point numbers and the stiffness in the system. With the proper choice of h, the adaptive Runge Kutta 
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above can achieve 0.001% accuracy for the simple problem in Example 1.  With double precision in the 

floating number calculation, 10-7 accuracy can be readily achieved! 

 

If we are very confident about the error estimator here, we can use 

1

1





i

i

x

E
 to guide the ratio of adaptive 

time stepping, so that the time steps can change much faster than 2.  We can define: 

 

AiR

i

x

E
r

 






1

1
     (31) 

 

where R is a relative error tolerance and A is an abosolute tolerance in case 
1ix  underflows to zero.  

The adaptive time steps can be: 

 

1. When r > 2 or r < 0.5, 
m

i
i

r

h
h 1

, where m is a user defined factor for how aggressive h should 

change with the present error estimator.  A typical value for m is 1.  When m = 2, the time step 

will react strongly to the error estimator, when m = 0.5, the time step will change slowly with the 

error estimator. 

 

2. For 25.0  r , we will keep the time step size. 

 

The popular orders of precision are implemented in most numerical packages such as RK236, RK34 and 

RK45.  Some systems have only odd or even-order terms, in which case there would be one more f 

evaluation to implement RK35, for example. 

 

We can see that the adaptive Runge Kutta method has achieved a lot, especially offering the error 

estimator that cannot be easily performed in Euler’s or Huen’s methods.  One remain disadvantage is that 

the intermediate k (ex. k2 and k3 in RK34) has evaluated f(t, x), but there is no solution of x(t+h/2) or 

x(t+3h/4) available.  In the multi-variable case when evaluation of f(t, x) is very expensive, it is not 

computational efficient in terms of the sampling frequency7.  This is where the multi-step TR-BDF2 

comes in to make one last improvement in the adaptive time stepping scheme. 

 

5. The Multi-Step Methods for ODE Solution 

 

From the local analysis, we have noticed that the more instance we use in “history”, the higher order of 

precision can be achieved.  For instance, Eq. (7) involves two time instances of t and t + h and is first-

order accurate (forward or backward Euler), Eq. (8) involves t – h and t + h and is second order accurate 

(trapezoidal Euler), and Eq. (11) involves t + h1, t + h2 and t and is second order as well (3-point local 

analysis).  When we are beyond the first few iterations (say i > 3 in Eq. (13)), it would seem wasteful that 

we evaulate xi+1 ONLY from xi, but neglect the information in xi-1, if not further into history.  This is not 

only for accuracy consideration because of error accumulation, but also for stability8.  A small caveat in 

                                                 
6 We can see the popular TR-BDF2 as a variation of RK23 with better computational efficiency, which will be clear 

later. 
7 Sampling frequency in many realistic cases is often limited by the Nyquist frequency. 
8 We need to be more careful here, even in the philosophical sense.  For any behavior that depends on history, it can 

be more stable to avoid making the same mistake, but in danger of never going anywhere by claiming there is 

nothing new under the sun. 
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the multi-step method is that the multi-step method may not be self starting unless it is used in the hybrid 

method with an initial one-step method.  For example, when we calculate x1, there is only x0 available. 

 

We will introduce two multi-step methods, the modified predictor and corrector method for intuition, and 

the TR-BDF2 for popularity.  TR-BDF2 has many similarities in its final form with an adaptive Runge 

Kutta (RK23), but the logic stems from the multi-step method. 

 

5.1 The modified predictor-corrector method with 2nd-order accuracy 

 

Let’s revisit the predictor-corrector method: 

 

Predictor:  hxtfxx iii
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Corrector: 
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The two steps are designed to have a more accurate estimate of the increment function  at the corrector 

step.  However, we also notice that the predictor is first-order accurate and the corrector is second-order 

accurate.  One simple way to achieve better order of accuracy is to modify the predictor to be second-

order accurate by accessing t = t – h, where the predictor becomes second-order as well (assuming that 

we have constant time steps now): 

 

Predictor:   hxtfxx iii

j

i 2,1

0

1  



  

 

Now the predictor-corrector method is 2nd order and mutliple steps, as we use ti-1 and ti to evaluate ti+1.  

The simple modification indeed can improve the accuracy in our sample problem in Example 1, but have 

the following disadvantages: 

 

1. The trapezoidal rule in both the predictor and corrector steps are only A-stable, not L-stable. 

2. A generalization to inhomogeneous time steps will be helpful. 

3. It is difficult to write down an error estimator. 

 

However, the multi-step predictor-corrector method does inspires other composite methods, of which the 

most important one is TR-BDF2 (trapezoid-backward-differentiation-forumula-2nd order), which can be 

cast into a RK23 method but offer higher computational efficiency in terms of time sampling frequency. 

 

5.2 The TR-BDF2 method 

 

In the spirit of the two-step predictor-corrector method above, we will look at the composite two-step TR-

BDF2 method: 

 

1. We will use trapezoidal Euler to make a prediction of x(t = ti + h).  Notice that TR is second-

order accurate, A-stable, but not L-stable. 
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2. We will use a 2nd-order backward differentiation in Eq. (11) by setting h1 = h and h2 = (1  )h 

to take the march to t + h.  Notice that all backward differentiation is both A-stable and L-stable. 
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    (34) 

 

Notice that we have use the shorthand on the subscripts i, i+, and i+1 to denote the instance of x(t) and 

f(t, x) evaluated at time ti, ti + h and ti + h, as shown in Fig. 5. 

 

 
In the spirit of adaptive Runge Kutta of using p to evaluate h, we can write down the error estimator by 

the difference between BDF and BDF2, where we have all fi, fi+, and fi+1 already evaluated.  The algebra 

is a bit involved (but not difficult), but the result is very useful. 
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If we take the partial derivative with  to the prefactor of Ei+1 to be zero, we find that: 
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   (36) 

 

As  is between 0 and 1, the optimal value of  to make the smallest prefactor for the error estimator is 

22 .  This is not a forced choice, as any  will still maintain second-order precision in TR-BDF2.  

We can use Eq. (31) for the adaptive time stepping scheme. 

 

We can make the following observations for TR-BDF2: 

 

1. It is second-order accurate and L-stable (inherited from BDF2). 

2. For every evaluation of f, we have a solution of x(t) at that time instance. 

Fig. 5. The composite time steps in TR-BDF2.  We have use the subscript for time instance shorthand. 
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3. The error estimator does not only give guidance to time stepping, but also provides an optimal 

value for . 
 

TR-BDF2 has been very popular for ODE where 2nd-order precision is sufficient.  This is the default 

method in SPICE and many other CAD programs. 

 


