ECE 4960 Spring 2017: Computational and Software Engineering

By Edwin C. Kan Lecture: MWF 11:15am – 12:05pm (362 Hollister)

Laboratory: Tuesday 7:30pm – 9:00pm

Logistics	Monday	Tuesday	Wednesday	Friday
	11:15am – 12:05pm	7:30pm – 9:00pm	11:15am – 12:05pm	11:15am – 12:05pm
Oliveira Chaps. 6-8	1/23	1/24	1/25	1/27
Einarrson Chap. 8	No class	No class	Class introduction	Software for the real
Bindel Chap. 1				world
Bindel Chap. 2;	1/30	1/31	2/1	2/3
Einarsson Chaps.	Source of errors in	Language tradeoff;	Integer and floating	Exception handling
1, 2	computing:	structure and	point representation	of integers and
	precision	objects;	standards	floating-points
Bindel Chap. 3	2/6	2/7	2/8	2/10
Oliveira Chaps. 3,9	Conditioning of	Source code control	Local analysis and	Euler and
Einarrson Chap. 13	functions and round-	and regression test	approximation by	Richardson methods
	offs	suites	Taylor series	
Einarsson Chap. 3	2/13	2/14	2/15	2/17
Coding 1:	No class	Lab 1 practicum	Integration and	Error estimation;
Exception handling			Gaussian quadrature	Unit testing
Bindel Chap. 4	2/20	2/21	2/22	2/24
	February break:	Linear algebra by	Linear algebra: full	Direct and iterative
	No class	software: Blas	and sparse systems	solvers:
				factorization
Einarsson Chaps.	2/27	2/28	3/1	3/3
4-6	Matrix conditioning	Modular	Error analysis:	Nonlinear equation
Chapra Part 3	and pivoting	programming and	perturbation and	and optimization:
D: 1101 5	216	object design/testing	noise injection	Jacobian matrix
Bindel Chap. 5;	3/6	3/7	3/8	3/10
Oliveira Chaps. 14,	Nonlinear equation	Lab 2 practicum	Iterative methods	Line search and
15 Codine 2: Matain	and optimization:		for local and global	quasi-Newton
Coaing 2: Matrix	Jacobian matrix	2/14		methods 2/17
Bindel Chap. 6	3/13 Least square and	3/14 Management of	J/15	3/1/ Computational
Onverra Chap. 15	Least-square and	management of	Least-square and	Computational
	optimization	and looks	optimization	geometry and spine
Bindal Chap. 7	3/20	2/21		111111g
Coding 3:	J/20 Variations in spline	J/21 Lab 3 practicum	Statistical methods:	J/24 Ordinary differential
Parametric	fitting	Lab 5 practiculi	Monte Carlo	equation and local
ontimization	intung		Wonte Carlo	analysis
Chapra Part 5	3/27	3/28	3/20	3/31
	Euler to Runge	Introduction to	Euler to Runge	No class
	Kutta	SPICE	Kutta	
	4/3	4/4	4/5	4/7
	Spring break:	Spring break:	Spring break:	Spring break:
	No class	No class	No class	No class
Chapra Part 7	4/10	4/11	4/12	4/14
Coding 4:	Adaptive Runge	Lab 4 practicum	Multi-step method:	Error estimation and
Nonlinear circuit	Kutta by error	Luc Provintenii	TR-BDF2	hp adaptivity
simulation	estimation			
Bindel Chap. 8	4/17	4/18	4/19	4/21
	1D finite-difference	(Reserved for make-	1D finite-difference	Finite-difference
	PDE solver: elliptic	up class)	PDE solver: elliptic	parabolic PDE
		<u> </u>		solver: parabolic

Bindel Chap. 9	4/24	4/25	4/26	4/28
Chapra Part 8	1D finite-difference	Case study for large-	1D finite-element	2D and 3D finite-
	PDE solver:	scale scientific	solvers	difference solvers
	hyperbolic	software		
Coding 5: Poisson	5/1	5/2	5/3	5/5
solver	2D and 3D finite-	Lab 5 practicum	2D and 3D finite-	2D and 3D finite-
	difference solvers		element solvers	element solvers
	5/8	5/9	5/10	5/12
	Future of Software	Hacking 4960	No class	No class
	engineering			

Course description: This course will introduce the mathematics, design, maintenance and testing practices to computing for interface and simulation of the physical real world. We will introduce

mathematical and software techniques to identify and correct the possible error in computing implementation of approximation, matrix manipulation, optimization, geometry and differential equations. Computational conditioning and its relation to nonlinear solvers, as well as stability and error estimation, will be examined. Software design and language characteristics for largescale computing will be briefly overviewed. Students can choose their most comfortable general-purpose development platforms, and C/C++ with ECE applications will be used for illustration. The Lab section on Tuesday night will be used to introduce programming techniques and project interaction.

Pre-requisites: ECE 2400 or CS 2110. An introductory course in scientific computing will be helpful but not required.

Reference textbooks: (all reading will be provided on-line)

- 1. D. Bindel and J. Goodman, Principles of Scientific Computing, 2009.
- 2. S. Oliveira and D. Stewart, Writing Scientific Software: A Guide to Good Style, Cambridge 2006.
- 3. B. Einarsson, Ed., Accuracy and Reliability in Scientific Computing, SIAM 2005.
- 4. S. C. Chapra and R. P. Canale, *Numerical Methods for Engineers*, 7th Ed., McGraw-Hill, 2015.
- 5. (Optional) S. McConnell, *Code Complete: A Practical Handbook of Software Construction*, 2nd *Ed.*, Microsoft Press, 2004.
- 6. (Optional) A. Allain, *Jumping into C++*, Cprogramming.com, 2015.

Program assignments: There are 5 program assignments as the main efforts throughout the semester. Each assignment will contain required smaller modules for design and testing purposes, as well as a culminating program. The grouping regulation will be described in each assignment. Groups of 2 students are the usual cases. Good program practices of version control and object models are strongly encouraged to facilitate code reuse, which not only enhances developer productivity, but more importantly improves reliability and ease of management.

Grading: Reading material reviews (by multiple choice questions on Blackboard): 10%; Coding: 15% each; Final hacking exam: 15%.

Blackboard site: 13047_2017SP