Fall 2016 **ECE 4880: RF Systems**

MWF: 11:15pm – 12:05pm Classroom: Bard 140

Prof. Edwin C. Kan

Email: <u>kan@ece.cornell.edu</u>, Office: Phillips Hall 325, 607-255-3998 School of Electrical and Computer Engineering, Cornell University

Weekly Events	Monday	Wednesday	Friday
Fall semester starts on	8/22	8/24	8/26
8/25	Semester not started	Class introduction	Review: Maxwell
			equations
Homework 1 due	8/29	8/31	9/2
(Friday 5pm at	Review: Distributive	Review: Reflection and	The history of radios
dropbox)	and lumped-element	impedance in Smith	
	transmission lines	Chart	
Homework 2	9/5	9/7	9/9
	Labor Day: no class	Functional modules in	Functional modules in
		transceivers: resonator	RF transceivers: filters
Homework 3	9/12	9/14	9/16
	Functional modules in	Functional modules in	Functional modules in
	transceivers: amplifiers,	RF transceivers: Mixer	RF transceivers: Data
	LNA and PA	and others	converter
Homework 4	9/19	9/21	9/23
	Free space and channel	Idealized RF designs:	Matrix representation in
	modeling	Unilateral link budget	signal chain
Homework 5	9/26	9/28	9/30
	Matrix representation in	Noise figure	Noise: mismatch,
	signal chain		mixing and image
Evening prelim exam	10/3	10/5	10/7
10/4: 7:30 – 9:30pm	Introduction to	No Class	No Class
Olin Hall 245	Simulink signal models		
	10/10	10/12	10/14
	Fall break: No class	No Class	Nonlinearity in radio
			frequency modules
Homework 6	10/17	10/19	10/21
	Nonlinearity and	Interplay between noise	Noise and nonlinearity:
	intermodulation (IM)	and nonlinearity	desensitization and
			jamming
Homework 7	10/24	10/26	10/28
	Noise and nonlinearity:	Architecture to improve	Architecture to improve
	dynamic range	linearity: parallel	linearity: feedthrough
			and feedback
Homework 8	10/31	11/2	11/4
	Frequency strategy:	Frequency strategy:	Frequency strategy:
	Superheterodyne	Superheterodyne	Low IF and homodyne
Evening prelim exam	11/7	11/9	11/11
11/8: 7:30 – 9:30pm	Phase noise in	Phase noise in	Data converter: type
Olin Hall 245	oscillators: sources and	oscillators: modeling	and main effects
	adverse effects		

Homework 9	11/14	11/16	11/18
	Data converter:	Local area radios: Wifi,	Cellular network: 3G,
	bandwidth and range	Zigbee, Bluetooth	4G and 5G
	11/21	11/23	11/25
	No Class	Thanksgiving: No class	Thanksgiving: No class
Homework 10	11/28	11/30	12/2
	Broadcasting network:	An outlook of RFID	An outlook of UWB
	radios and TVs		radio

Course description: This course addresses the design of radio-frequency links in the component view to enable eventual full-duplex, multi-access wireless network. The analysis will reside mostly in the signal (SIMULINK) level instead of the circuit implementation, although the nonideal circuit characteristics will be reflected in the signal representation. Federal Communications Commission (FCC) and Occupational Safety & Health Administration (OSHA) standards will be introduced. Existing standard protocols will be selectively introduced including FM, TV broadcast, Bluetooth, Z-wave, Zigbee and Wi-fi.

Pre-requisites: ECE 3030 or consent of the instructor

Related courses: ECE 4870 (Radar Remote Sensing); ECE 4670 (Digital Communication); ECE 5680 (Wireless Communication); ECE 5790 (RFIC Design).

Logistics: 3 units: Lectures only; 4 units: Lectures and Labs. There are two prelim exams and one final exam.

Office hour: Thursday 4:30pm – 6:00pm

Textbooks:

- 1. Required: W. F. Egan, Practical RF System Design, Wiley 2004.
- 2. Recommended: T. H. Lee, *The Design of CMOS Radio Frequency Integrated Circuits*, 2nd Ed, Cambridge, 2004. (Selected chapters that treat system aspects only. No transistor circuits will be included).
- 3. Reference: T. J. Rouphael, Wireless Receiver Architecture and Design: Antennas, RF, Synthesizers, Mixed Signal and Digital Signal Processing, Academic Press 2014.
- 4. Reference: M. Steer, *Microwave and RF Design: A System Approach*, 2nd Ed., 2013, SciTech.

TA hour for SIMULINK help: Thursday 5 – 6 pm in Phillips 303 when necessary.

Grades: (students taking **3 credits**): Homework (20%); first prelim exam (20%); second prelim exam (25%); final exam (35%); (students taking **4 credits**): Homework (15%); first prelim exam (15%); second prelim exam (20%); lab: (20%); final exam (30%).

Course outcomes:

- 1. The student can analyze the signal flow in a given block diagram of radio transceivers in both analytical and SIMULINK representations.
- 2. The student can analyze the fundamental tradeoffs in noise, nonlinearity and spectral/component costs in a given FCC-approved wireless system.
- 3. The student will acquire sufficient design skills for active participation in amateur radio clubs and remote-control robotics.

Final exam: TBA.