ECE 4880 RF Systems Fall 2016

Homework 4

Due at 5pm of 9/23 in the Phillips Hall Dropbox
(Please box your quantitative final answers)

1. (Antenna dBi) You are given an antenna below with a 10 dBi rating in 2.4 GHz with a bandwidth of 0.5 GHz . From its size, you know that this is not a multi-antenna array. Ignoring the polarization effects and beam steering, which of the following is true? ($\mathbf{1 0} \mathbf{~ p t s}$)
(a) The antenna can cover all of the space in the front hemisphere.
(b) When you walk a receiver from the left to the right side, you would not observe much change in the received power strength.
(c) The antenna can at most cover a solid angle of 72°.

(d) The antenna will not be able to cover the front-left-down corner at all.
(e) The antenna can be used to enhance your 1.9 GHz cell phone for better reception (if you can plug it in).
2. (Matching network for MOSFET) An inexperienced engineer put a MOSFET directly to implement an RF amplifier. Assume that the MOSFET has been properly DC-biased to be in the saturation region, and within the voltage range of operation can be approximated by the π network shown below. The input and output have transmission line of impedance of Z_{0}.

(a) Write down the Y matrix for the π network, first ignoring $C_{g d}$ ($\mathbf{5} \mathbf{p t s}$)
(b) Write down the S matrix using the Y network in (a), assuming both input and output are connected by the transmission line of Z_{0} impedance. ($\mathbf{5} \mathbf{~ p t s) ~ O b s e r v e ~ h o w ~ g m ~ a p p e a r s ~ i n ~ t h e ~ f o u r ~}$ S parameters, and rationalize the expression. ($\mathbf{5} \mathbf{~ p t s}$)
(c) Let's look at $S_{2 l}$, which is the transfer voltage gain. In the quasi-static limit, we know that the transfer voltage gain should be close to $-g_{m}\left(r_{o} \| Z_{0}\right)$. Under what condition does the above S_{21} approach $-2 g_{m}\left(r_{o} \| Z_{0}\right) ?(\mathbf{5} \mathbf{~ p t s})$ Explain the additional factor of 2 here. ($\mathbf{5} \mathbf{~ p t s}$)
(d) Obtain the numerical values of the S matrix (complex numbers) with $C_{g s}=100 \mathrm{fF} ; g_{m}=50 \mathrm{mS} ; r_{o}$ $=2 \mathrm{k} \Omega ; Z_{0}=50 \Omega$. First at 10 MHz and then at 10 GHz . Just keep two significant digits to simplify your calculation, e.x., $1.0+0.04 \cong 1.0$. ($\mathbf{1 0} \mathbf{~ p t s}$)
(e) Suggest an input impedance matching network just outside the π network at 10 GHz so that the S_{11} is minimized. ($\mathbf{5} \mathbf{~ p t s}$) Give numerical values of your matching network circuit element parameters (5 pts)
(f) Use the input impedance matching network below with an input transmission line length to cancel the reactance and a series element of lumped $R_{g}=Z_{0}=50 \Omega$. What is the input transmission line length at 10 GHz ? ($\mathbf{5} \mathbf{~ p t s}$)

(g) Express $T_{1 l}$ explicitly by the circuit elements in the π network in Part (c). Give your answer in the low frequency and high output resistance limit (i.e., $Z_{0} \ll r_{o}$.) Is $T_{l l}$ positive or negative? ($\mathbf{5}$ pts)
(h) Now we will add in the effect of $C_{g d}$. Assume $C_{g d}$ is only big enough to affect Y_{12}, which is originally zero. Find Y_{12} by the definition of $Y_{12}=i_{1} / v_{2}$ when $v_{l}=0(\mathbf{5} \mathbf{~ p t s})$. Find the approximate expression for S_{21}. What is the modification of S_{21} at high frequency? ($\mathbf{5} \mathbf{~ p t s}$)
3. (TL de-embedded network) In the through-only de-embedding scheme, we can observe the mirror symmetry of the left and right L and R network of the GSG pads for the through network on a chip or PCB board.

Mirror symmetry in Through-
Only Measurement
Through-Only Measurement $=\boldsymbol{T}_{\text {through }}$
(a) If the left pad can be expressed as: $[S]_{L}=\left[\begin{array}{ll}S_{11} & S_{12} \\ S_{21} & S_{22}\end{array}\right]$, write down $[S]_{R}$ by the mirror symmetry (5 pts).
(b) Write down $[T]_{L},[T]_{R}$ and $[T]_{\text {through }}$ in terms of $[S]_{L^{\prime}}$. $\mathbf{5} \mathbf{~ p t s) ~}$
(c) What is the symmetry that can be observed in $[T]_{\text {through }}$? ($\mathbf{5} \mathbf{~ p t s) ~ I f ~ a t ~ a ~ g i v e n ~ f r e q u e n c y ~}[T]_{\text {through }}$ is the only available measurements, can we derive $[S]_{L}$ and $[S]_{R}$? Justify your answer from the number of variables in each case ($\mathbf{5} \mathbf{~ p t s}$).
(d) By using the definition of the Y matrix and the mirror symmetry between $[Y]_{L}$ and $[Y]_{R}$, write down the relations between the elements of $[Y]_{L}$ and $[Y]_{R}$. $\mathbf{5} \mathbf{~ p t s}$)

