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Chapter 9: Phase Noises in the Signal Chain    

 

 
Reading Assignments: 

 

1. T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, 2nd Ed, Cambridge, 2004. 

Sec. 18.1 – 18.4. 

2. W. F. Eagan, Practical RF System Design, Wiley, 2003, Chap. 9.  

 

Game Plan for Chap. 8: Frequency strategy 

 

1. Effects of amplitude and phase noises in RF transceivers 

2. Intuitive modeling of amplitude and phase noises by LC resonators 

3. Empirical models and parameters 

 

Let’s take a review on the noises.  A noise-free single-tone signal can be expressed as: v(t) = Acos(0t).  

We can see two kinds of “added noises” in this signal:  

 

1. Amplitude noise (AM): stochastic process by : v(t) = A(t)cos(0t) 

2. Phase noise (PM): stochastic process by: Acos(0t + (t))  

 

The phase noise is often represented as one-sided spectral density of a signal’s 

phase deviation or phase instability S(f).  In other words, the phase noise is 

often defined by L(f) (pronounced as script L of f), which represents the noise 

power relative to the carrier contained in a 1Hz bandwidth centered at the 

carrier frequency, which has a unit of dBc/Hz.  The “c” in dBc reminds you 

that the noise power is normalized by the carrier.  As an example, For a 1/f 

phase noise, L (f) can be –80dBc/Hz at 10kHz offset or –90dBc/Hz at 100kHz.  

 

9.1 Effects of phase noises in RF transceivers 

 

Continuing with our treatment of linear time-varying systems, we will now treat the effect of phase noises 

in the overall architecture before we put everything together for the present RF applications.  When we 

discuss about noises in Chap. 4, we have listed where the noise power originates from, and how the 

“additive noise” propagates the signal-to-noise ratio along the signal chain.  Phase noise is not a new 

noise source.  Its physical origin is the SAME as the additive noise in the gain module before, including 

thermal, shot, and Flicker noises.  However, as the mixer is a special element that multiplies two signals 

to achieve the purpose of frequency conversion (aka heterodyning) and channel selection, the phase noise 

with its multiplicative nature needs special treatment.  As shown in Fig. 9.1,  
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If LO can be approximated with a delta function in spectrum (monotone sinusoidal waves from a perfect 

oscillator), then the multiplication will not result in any further distortion of the original data waveform, 

but ONLY a frequency translation by fLO (up or down conversion).  The finite precision to the delta 

function can be treated as a combination of amplitude (envelope function) and phase (zero crossing) 

noises, generally termed as “reciprocal mixing” of amplitude modulation (AM) and frequency modulation 

(FM).  The amplitude of LO will affect the mixer gain and nonlinearity, which can be treated just like in 

any other discrete-element amplifiers.  On the other hand, the phase noise can be viewed as additional 

frequency components or uncertainty in zero-crossing points.  The two views have similar influence on 

the multiplication if finite number of cycles is used in eventual evaluation.  We will not distinguish 

frequency modulation or phase modulation, although in general they can be different especially in long-

time integration.  The slight spreading in LO will translate into the mixer product in term of symbol 

distortion, spread spectrum (similar to “pseudo-noise” injection in CDMA) and timing uncertainties, as 

shown in Fig. 9.2. 

 

 
 

Notice that the spreading can be significant enough to overshadow the adjacent band, if both the phase 

noise and the interference signal are strong. 

 

The nonlinearity in the mixer, or combined with the nonlinearity of the LNA is particularly 

troublesome, as the spur analysis in the last chapter.  We will now focus on the intuitive understanding of 

phase noise, and leave the noise and nonlinearity interplay details still only to numerical tools.  The phase 

noise concerns pre-date the radio, because for sure it is important when people intended to build accurate 

clocks out of pendulum and springs. 

Fig. 9.2. Mixing of ideal LO and LO with realistic phase noises. 
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Fig. 9.1. Phase noises enter the mixers in TX and RX. (a) In TX, phase noises are multiplied 

(convoluted) on the intended signal; (b) In RX, phase noises (or spread LORX spectrum) will enlarge 

the influence of the interferer.  The uncertainty in LOTX and LORX will demand wider channel 

separation.  LOTX phase shift at the receiver however carries the time-of-flight information. 
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Fig. 9.3. Phase errors in 4-bit Q-ary modulation can 

cause errors from two nonadjacent decision 

boundaries. 
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9.1.1 Effects of the LO phase noises 

 

 There are three main detrimental effects by the LO phase noises.  Remember that in the 

heterodyne scheme (frequency conversion to fit the FCC and antenna requirements, including homodyne), 

the LO mixing happens twice.  Once at the transmitter and once at the receiver.  The purpose of the radio 

link is to retrieve the information before the transmitter modulation by the receiver after demodulation, 

which can be polluted by the (at least two) mixers, the nonlinearity of the amplifiers (in particular PA and 

LNA), and any interference received by the receiver antenna including self jamming. 

 

1. Receiver desensitization by the transmitter and receiver LO phase noises: A strong interferer can 

have a longer-than-expected tail due to its own LO phase noise, and desensitize a neighboring 

channel.  This is more serious especially when the receiver has a high sensitivity but insufficient 

dynamic range, as the large interferer can saturate the base band when the digital signal 

processing cannot have any information left to work on.  

 

2. Jitter is the uncertainty in synchronization (or zero-crossing points) of the source.  The phase 

noise in LO can make the oscillator that generates LO look jittery.  Any stable oscillation is 

constrained by two conditions: loop gain 

= 1 and loop phase delay = 2n.  The 

loop gain fluctuation around 1 (long-

term integration to be 1) is the amplitude 

noise or AM; the loop delay fluctuation 

around 2n is the phase noise or PM.  If 

the oscillation is generated by transistors, 

both fluctuations can be traced back to 

the transistor current fluctuation due to 

thermal, shot and Flicker noises.  

Therefore, phase noise has the same 

physical origin of noise power, but is 

manifested differently from the LO 

feeding into the mixer. 

 

3. Larger bit error rate in Q-ary modulation 

that can be harder to correct.  For 

example, as shown in Fig. 9.3, the 4-bit 

Q-ary modulation (2 bits from FM and 2 bits from AM) can make errors across two non-adjacent 

domains.  Adjacent domains have only one bit in error, and are often easier to correct in error 

correction code (ECC). 

 

9.2 Intuitive modeling of phase noises by LC oscillators 

 

We will show an intuitive phase noise model in the LC resonators as shown in Fig. 9.4. This can 

be either indeed the electrical oscillator, such as the Colpitts oscillator or Clapp oscillator or cross-

coupled oscillator (where electrostatic and magnetostatic energies balanced each other), or just a model 

for mechanical or piezoelectric oscillators (where two energies balance each other such as potential and 

kinetic energy in pendulum, or strain and electrostatic energy in quartz crystal oscillators). 
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As the loop gain has to be 1 for stable oscillation, IinVout has to be exactly Vout
2/R in the long-term 

integration.  This equality can just be valid in small signals, where Iin can be replaced with a transistor or 

any device with a negative differencial resistance (NDR) which cancels R. 

 

9.2.1 AM and PM separation  

 

 Let’s first assume that the resonator has achieved the loss cancellation by Iin, and is oscillating 

indefinitely when there is no further noise perturbation.  Notice that the stable solution requires the form 

of VAcos(0t), which is DC balance and has an average stored power of CVA
20/2.  Now an instantaneous 

perturbation Iin happens in Iin, and injects a small amount of charge into the LC resonating system.  

There are three interesting cases: 

 

1. Injection at the peak voltage:  The LC system will have an additional energy of VAIin and will 

follow the solution of a higher amplitude (all amplitudes are allowed in the resonator), as shown 

in Fig. 9.5(a).  In this case, the zero crossing point will NOT change, and we only have amplitude 

modulation, no phase modulation1!!! 

  

2. Injection at the zero-crossing point: As the voltage is zero, the injected current will not add any 

energy, so it has to stay at the same VA magnitude and frequency 0.  The additional charge will 

however help the voltage reach its maximum and the next zero-crossing point faster, as shown in 

Fig. 9.5(b).  This is a phase modulation without amplitude modulation! 

 

3. Injection at random time with random sign of Iin: True noise has unpredictable timing and sign (so 

that the DC level is zero, and no synchronization possible).  If Iin has true noise, then it would be 

shown as amplitude and phase modulation with no special preference to either. 

 

                                                 
1 The effect to compensate oscillation loss (such as friction or resistance) with least influence to the phase/frequency 

inaccuracy is known for more than 400 years in making mechanical clocks and watches, where the spring “kick” 

only happens at the pendulum point with maximum velocity. 

Iin R L C Vsig 

+ 

 

Fig. 9.4. A RLC resonator with a 

source current injection, compensating 

the energy loss in R to maintain stable 

oscillation. 
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9.2.2 Impedance analysis and 1/f2 dependence 

 

We will now assume R is the only noise source in this model.  This assumption is not too far off, 

as lossless L and C have to be noiseless.  Remember that noises have origins from the 2nd law of 

thermodynamics where the noise power cannot be retrieved.  Any energy conservation system will not 

have any noise power.  We can write down the noise power expression as: 
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We can model Z(f) as the typical resonance system with a peak value of R at LC/10  , 

where at Z(f 0) = 0 due to inductance L and Z(f ) = 0 due to capacitance C.  The impedance Z and 

the quality factor Q can be expressed as usual: 
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As the energy stored in L and C alternatively is: 

 
2

sigsig VCE         (9.4) 

 

The noise-to-signal power for an oscillator can be expressed as: (in dBc, i.e., noise power with 

respect to the carrier signal) 
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Fig. 9.5. Special cases in perturbation of oscillators: (a) Injection at voltage peak will cause only amplitude 

modulation; (b) Injection at voltage zero-crossing point will cause only phase modulation. 
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By the equi-partition principle, if the noise has two degrees of freedom as in AM and FM, each 

one will have half of the power in Eq. (9.5) (because the noise has no preference to be in amplitude or 

phase).  Thus the phase noise power in dBc will be:  

 

sig

noisephase
E

kT
P

2
_   (in dBc)     (9.6) 

 

We can recognize from Eq. (9.6) that a significant part of phase noise in an oscillator CAN come 

from the thermal noise in R, in addition to any other Shot or Flicker noises.  Now we have an idea of the 

total phase noise power in the oscillator, but what will be the spectral distribution?  Observing from the 

integral in Eq. (9.1) with Z(f), we know that the noise will not be white, but focus around 0, as shown in 

Fig. 9.6.  What is a good approximation?  Unfortunately, no clean analytical form is available.  We will 

use a perturbation analysis on a frequency  higher than 0 to build some intuition. 

 

 
 Close to 0 the imaginary part of the impedance in Eq. (9.2) can be approximated by:  
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With the help in the expression of Q to include R, we can find the magnitude of the impedance: 
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Equation (9.8) reveals two things: (1) |Z| close to 0 is inversely proportion to , and Higher Q will 

have a faster drop in impedance with respect to .   As we know the total phase noise power from Eqs. 

(9.5) and (9.6), we can now estimate the phase noise power density as a function of  close to 0 in the 

following expression by observing Eq. (9.1): 
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Fig. 9.6. Oscillator modeling by RLC resonators: (a) The impedance behavior; (b) The phase noise power 

density approximation in a log-log plot. 
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Notice that L is typically expressed in unit of dBc/Hz, where “c” reminds us that the phase noise power 

density is normalized to the oscillating carrier Psig.  The 1/2 dependence comes from the thermal noise 

here, not Flicker.  Why is this thermal noise not white?  This is due to the thermal noise in R interacting 

with the resonator, which gives it the specific frequency dependence (a preference to be centered around 

0). 

 

9.3 Empirical functions for the phase noise in oscillators 

 

However, the Flicker noise will also interact with the oscillator.  The Flicker noise from surface 

conduction interaction is originally very close to zero frequency.  If the oscillator is first thought as a delta 

function in 0, then the nearly DC Flicker noise will simply be shifted to around 0.  However, some 

further interaction with the thermal noise will happen, similar to how the phase noise spread interacts with 

any signals, as illustrated in Fig. 9.2.  An empirical expression is often invoked (named as Leeson 

approximation), when the Flicker noise is not too dominant: 
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We can see that Eq. (9.9) will contain a 1/3 term when  is very small.  It will then become either 

1/ or 1/2, depending on the value of 0/2Q and 3/1 f
 , as shown in Fig. 9.7.  When 0/2Q is large, 

it takes a larger  to reduce the middle term to 1, and the dependence by 1/2 will last longer.  The 

parameter F is another parameter to account for the increased phase noise in the 1/2 region due to the 

interplay between the thermal and Flicker noises.   

 

Notice that when Q is not very large (i.e., the thermal noise from R in the resonator system is 

significant) and the active energy replenishing unit does not have a lot of Flicker noise (i.e., 0/2Q >> 

3/1 f
 ), we will have a transition from 1/f3 to 1/f2 region before the phase noise hits the additive thermal 

noise floor.  On the other hand, when Q is very large (i.e., the thermal noise from R is small or the 

oscillator itself has very high Q like a crystal oscillator) and the active energy replenishing unit has 

significant Flicker noise (a surface-channel MOSFET), or equivalently 0/2Q < 3/1 f
 , then we will 

have a transition from 1/f3 to 1/f region with a very long tail before the phase noise hits the additive 

thermal noise floor.  This is also shown in Fig. 9.7. 

 

 

Fig. 9.7. Leeson’s empirical model for phase noise: (a) f0/2Q > f1/f3 (higher thermal noise and lower Flicker 

noise); (b) f0/2Q < f1/f3 (lower thermal noise, i.e., large Q and higher Flicker noise)  
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In actual measurements when f0/2Q and f1/f3 are not far apart, we often get the phase noise tail to be 

a function of 1/f, where  is between 1 and 2 (a typical value can be 1.8).  If one attempts to measure the 

Flicker noise directly close to DC, we often obtain an  that is between 1 and 2 as well.  This is not 

because Flicker noise is far away from 1/f, but because the measurement equipment often has a limited Q 

and some noises as well.  It is very difficult for any oscillator to maintain a high Q when the frequency is 

very low.  The thermal noise of the oscillator in the measurement equipment is thus mixed into the given 

noise response to push  to be significantly larger than 1. 


