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ECE 4880: RF Systems 

 
Fall 2016 

 
Chapter 6: Interplay Between Noise and Nonlinearity  

 

 
Reading Assignments: 

 

1. W. F. Eagan, Practical RF System Design, Wiley, 2003, Chap. 5. 

 

Game Plan for Chap. 6: Interplay between noise and nonlinearity 

 

1. Illustration of the problem caused by noise-nonlinearity interplay 

2. Gaussian noise and 2
nd

-order nonlinearity 

3. 3
rd

-order nonlinearity and its influence on frequency-division modulation 

4. Instantaneous spurious-free dynamic range (ISFDR) 

 

6.1 Illustration of noise-nonlinearity interplay 

 

To introduce the interplay between nonlinearity and noise, we will begin with the most serious scenario in 

a qualitative way, and then develop tangible quantitative treatment from the simplest second harmonic 

and Gaussian noise to push further.  Consider a channel contains data modulation and phase noise from 

the LO mixing in the transmitter in Fig. 6.1.   

 

 
 

The LO carrier frequency is denoted by a large delta-function-like arrow, and the bandwidth has double-

side bands from data and phase noise before going through the nonlinearity of the power amplifier.  

Assume the power amplifier has uniform gain within all frequency in the channel, and the only in-band 

nonlinearity is IM3 with intermodulation at (2fa – fb) and (2fb – fa).  Let’s further assume the LO carrier 

has much larger magnitude than any other signal in the bandwidth of interest. Now if the carrier is the 

Bcosb term, then for IM3 in Eq. (6.1): 
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Fig. 6.1. Illustration of interplay between IM3 and bandwidth by data modulation and phase noise.  

Two frequency components originally in vin are plotted in the black arrow.  The IM3 nonlinearity can 

magnify (depending on a3 and B/A) and spread them (f becomes 2f). 
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only the second term of 3a3/4[AB
2
cos(2b - a)] is important, as B >> A.  We notice that for the scenario 

here the LO carrier will have three effects on the frequency components originally in vin: 

 

1. The component at the left side of fLO will now be on the right side, and vice versa (this is true only 

if the LO signal is much stronger).  Please recall that the receiver mixer will see the noise and 

interference in the image as well (Fig. 4.6). 

 

2. The frequency spread will be two times larger. 

 

3. The IM3 magnitude 3a3/4×AB
2 
can be larger or smaller than the original component with A. 

 

Remember that the data that the receiver needs to correctly retrieve is ONLY in the data modulation.  The 

phase noise, together with the IM3 generation, will make the retrieval contain distortion in analog, or bit 

error in digital. 

 

6.2 Gaussian noise and 2
nd

-order nonlinearity 

 

Now let’s use the simplest case of 2
nd

-order nonlinearity with constant noise in the bandwidth of interest.  

We will use both the positive and negative frequencies (positive and negative traveling waves) here for 

the general case, as the cosine function in the two-tone analysis in Chap. 5 contains both positive and 

negative frequencies: 
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In Fig. 6.2, a Gaussian noise in the bandwidth BW (to distinguish from the magnitude of the two-tone 

signal) will be considered first (Gaussian noise is the white noise sampled in a given band).  Remember 

that the 2
nd

-order nonlinear term gives: 
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This contains a DC term, 2
nd

 harmonic and intermodulation 2 (IM2), as plotted together with the 

fundamental a1vin in Fig. 6.2.  Notice that IM2 will cause a triangular shape in spectrum.  This is due to 

multiplication in the real-time space resulting in the convolution in the spectral space, or we can view it 

from the density of components.  The only component to give 2fc + BW is the pair at fc + BW/2 and fc  

BW/2  while at 2fc, any two components such as fc + f and fc +f with difference at 2fc will contribute. 

 

The IM2 component of the two-tone signals of vA() = Acosa = Acos(at+a) and vB() = Bcosb = 

Bcos(bt+b) at any given frequency f can thus be written as the convolution: 
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In this general definition, we can see the triangular spectrum for IM2 in Fig. 6.2 can be generated with a 

sliding vB offset by f upon vA, where both vA and vB are the input spectrum. The peak around f = 0 will be 

two times of the peak around f = 2fc.  Notice that in this practice, we have calculated the convolution 
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ignoring the possible phase difference, i.e., we have considered all IM2 terms in a coherent state.  

Therefore, this establishes an upper bound for IM2, as any incoherence will decrease the resulting 

magnitude.  If all phases of the IM2 terms are random, then we will approximately have half of the power 

of the coherent case. 

 

 
 

We can make one more complication to approach a more realistic signal.  Assume that we have a large 

monotone component at fc and fc at the input, as shown in Fig. 6.3.  We can use the superposition 

principle to add in the convolution for this delta function.  The direct 2
nd

-harmonic delta-like and two 

rectangular boxes will add up with the triangular form to give the final shape of noise-IM2 spectrum 

around 2fc. 

 

 
Equation (6.4) describes the multiplication of two signals in the time domain and convolution in the 

frequency domain.  We should see it soon again when we treat the phase noise in LO. 

 

6.3 Gaussian noise and 3
rd

-order nonlinearity 

 

Now we can take a “simplified” look at the 3
rd

-order nonlinearity.  You can probably imagine this will be 

rather complicated not only because more terms in Eq. (5.10), but also because the two-time convolution 

to get any analytical expressions.  As the phase coherence can cause even more complications, we will 

Fig. 6.3. Interplay of 2
nd

-order nonlinearity and Gaussian noise and a delta-like function at fc.  Notice 

the additional components in comparison with Fig. 6.2 
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Fig. 6.2. Interplay of 2
nd

-order nonlinearity and Gaussian noise.  We will model the nonlinear voltage 

transfer function here as vout = a1vin + a2vin
2
.  The input vin is a flat spectrum centered around fc with 

S0 magnitude BW bandwidth. 
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only have qualitative treatment here.  For IM3 in Fig. 6.4, using the slide-window point of view, we can 

see that the output spectrum of the input in Fig. 6.2 will have a parabolic shape with 3BW spread. 

 

 
 
6.4 Spur-free dynamic range 

 
As a figure of merits for the RF transceiver hardware, we often would like to compare them by the 

instantaneous spur-free dynamic range (ISFDR), which is used for technology choices.  “Instantaneous” 

means no further adaptive algorithmic techniques like gain control, noise cancellation or orthogonality 

have been applied yet.  “Spur-free” describes the upper signal limit where nonlinearity-caused “spurs” 

(often IM3 and desensitization limited) are still insignificant.  ISFDR is then set by the difference of 

upper and lower input signal limits, where the lower signal limit is set by “thermal noise” so that the 

transceiver output can still recognize an intended signal, and the upper limit by the transceiver 

nonlinearity where distortion is still no larger than the tolerable thermal noise.  ISFDR has NOT 

considered the ambient interference, self jamming or other non-white noises either, but ISFDR shows a 

balance presented by noise and nonlinearity for the module cascade at hand. 

 

If we assume the upper limit of spurs is mainly by IM3, we can see from Fig. 6.5 the “spur-free” limit can 

be guaranteed when the input pinmax does not generate more IM3 spurs than the output noise poutmin by pinmin 

(noise limited).  By the triangular relation in Fig. 6.5 of the dB – dB plot, we can write (all in dB, so p is 

capitalized as a reminder): 
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minminmax ininin PIIPPPISFDR   (6.5) 

 

where IIP3 is the input power at the intercept point of fundamental and IM3 signals. 

Fig. 6.4. Interplay between IM3 and noise.  The peak around fc is about 3 times higher than the peak 

around 3fc.  Three main consequences: image frequency generation, spread-over spectrum and 

waveform dependence on signal strength. 
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Example 1: For a Wi-Fi receiver (IEEE 802.11n) with 40MHz bandwidth, cascade noise figure at 8dB 

and IIP3 = 3dBm (rather low, set usually by the LNA), we can calculate the pinmin and ISFDR as: 

 

dBmdBdBdBmPin 90876174min   

 

 174dBm: Thermal noise power per Hz at room temperature. 

 76dB: 10log10(4010
6
) 

 8dB: Additional noise by the cascade noise figure.  Notice that the noise factor is defined as the 

ratio of SNRin/SNRout, and hence we can obtain the noise-limited pinmin by adding the noise figure 

to the thermal noise floor.  6  8dB is a typical noise figure for RF receivers, as LNA often has 

noise figure around 3 – 6 dB, and a gain of 15 – 20 dB to mitigate the larger noise figure in the 

following modules. 

 

dBPIIPISFDR in 58)3(
3

2
min  . 

 

This is a typical dynamic range for Wi-Fi receivers. 

 

 

Example 2: For a GPS receiver with 4kHz bandwidth, cascade noise figure at 8dB and IIP3 = 3dBm 

(notice that most RF components are similar, but the filter bandwidth is much smaller), we can calculate 

the pinmin and ISFDR as: 

 

dBmdBdBdBmPin 130836174min   

 

This is a typical GPS receiver sensitivity.  When your RF transceiver is designed properly, you will find 

your system is limited by the fundamental thermal noise.  We then have, 

 

dBPIIPISFDR in 85)3(
3

2
min  . 

 

Fig. 6.5. Illustration of instantaneous spur-free dynamic range (ISFDR) for a given RF module.  If 

the minimum recognizable input power pinmin is limited by the noise at its output poutmin, the maximum 

pinmax without significant IM3 spurs is when poutIM3 = poutmin.  We then define ISFDR = pinmax – pinmin. 
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This is a typical dynamic range for GPS.  Notice that the bandwidth is a fundamental choice among data 

rate, multiple-access, noise and nonlinearity-based spurs.  We can make a receiver to be very sensitive by 

lowering the bandwidth (76dB in Example 1) or decreasing the noise temperature (174dBm in Example 

1), but the dynamic range will not increase as large.  As suggested by Eq. (6.5), for every dB increase in 

receiver sensitivity, the dynamic range will increase only 2/3 dB with a constant IIP3.  The other 1/3 dB is 

given to the noise-nonlinearity interplay. 

 


