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ECE 4880: RF Systems 

 
Fall 2016 

 
Chapter 5: Nonlinearity       

 

 
Reading Assignments: 

 

1. W. F. Eagan, Practical RF System Design, Wiley, 2003, Chap. 4. 

 

Game Plan for Chap. 5: Nonlinearity 

 

1. Representing module nonlinearity in the Taylor series of vin 

2. 2
nd

 order and 3
rd

 order terms in the two-tone signal treatment and intermodulation (IM) 

3. Representing nonlinearity with intercept point (IP) 

4. Nonlinearity in the module cascade 

 

5.1 Representing module nonlinearity 

 

RF signals are composed of a carrier (modulated and demodulated by LO) and the frequency components 

around the carrier.  The bandwidth of a channel corresponds to the bandwidth of the baseband.  The goal 

of a successful RF transmission is to retrieve the baseband after modulation in the transmitter (shifting to 

higher frequency for smaller antenna and more available spectral space) and demodulation in the 

receiver (shifting back to be decoded).  In Fig. 5.1, we can see how a “RF signal” is composed.  There are 

desirable spectral components from the baseband, and flicker LO phase noise together with the 

thermal/shot noise floor.  The frequency components in the original data can “intermodulate” to cause 

additional interference under module nonlinearity.  These additional frequency components can interfere 

with the spectral composition of the original baseband and cause errors in data retrieval.  Therefore, we 

need to understand and control the magnitude of the intermodulation (IM) for successful RF transmission. 

 

 
 

Nonlinearity in modules are sometime “useful”, as it is the base for data modulation and demodulation.  

However, nonlinearity can also give rise to “spurious” intermodulation (IM) that distorts the original 

baseband.  The good news is: nonlinearity is power related.  When the input signal power of a functional 

module is very small, all modules behave “linearly” (all except the direct cross product term in the 

Fig. 5.1. Noise and interference in an RF signal.  The original data are modulated on the “in-channel” 

bandwidth (here shown single-side band SSB) represented by black arrows.  Nonlinearity in RF 

modules can cause “in-band” intermodulation represented by red arrows.    Flicker phase noise from 

LO generation and thermal noise floor are also shown in the blue envelope. 
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Gilbert-cell multiplication, which will multiply small signals accordingly).  We need to know at what 

power level nonlinearity has to be considered for its IM effects in signal processing.  This is the idea 

behind the “intercept point” (IP), an extrapolation point when IM is as large as the fundamental 

components.  When we know how many dBs the input signal is below IP, we can estimate how large IM 

is. 

 

We will use a two-tone signal to illustrate IM by nonlinearity, although we remember that RF data signals 

have many spectral components and noises. 

 

bain BAv  coscos   (5.1) 

 

where a and b correspond to the frequency components in fa and fb by: 

 

bbbaaa tt   ;  (5.2) 

 

For a functional module, we will approximate its voltage transfer functions (only S21 or T11, and we will 

ignore other reflection components for now) by a Taylor series: 

 

...3
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2

210  inininout vavavaav  (5.3) 

 

We show a typical voltage transfer curve (VTC) in Fig. 5.2.  We will treat all ai as real, lumping all 

phase/frequency shift to treatment before or after the nonlinearity.   

 

 The first constant term a0 can be dealt with by a level shifter or taking vout in a differential 

manner.  

 The second term a1vin is the transducing gain term of S21 or T11.  We assume that this is the 

desirable linear function of the module, which will not change the spectral shape of the mix of 

tones within the channel. 

 The third term a2vin
2
 and fourth term a3vin

3
 and thereafter will generate the harmonics of the single 

tone (which can often be filtered out readily) and intermodulation (IM) of the multi-tone signal. 

 If VTC is an odd function (as shown in Fig. 5.2), then all even-order terms of a0, a2, a4, … will be 

zero. 

 A diode VTC is classical example when all a’s can be non-zero (except a0 = 0 if VTC passes 

through the origin).  The even-order term can generate a DC offset regardlessly. 

 

 
 

Fig. 5.2. A generalized voltage transfer curve (VTC) that can be approximated with a Taylor 

polynomial function (red solid curve).  The linear approximation is shown in a black dashed line. 

Here a0 = 0, and we can also observe that nonlinearity only affect vout when vin is large.  The VTC 

here is a special case of “odd function” symmetry, where all even-order terms of VTC will be zero. 
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5.2 2
nd

 order terms in the two-tone signal treatment and intermodulation (IM) 

 

We can see the quadratic term would expand to the 2
nd

 harmonics and IM terms of the two-tone signal as: 
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 (5.4) 

 

We can see how the quadratic nonlinearity generates the additional DC, 2
nd

 harmonic (H2) and 

intermodulation (IM2) from Eq. (5.4).  Notice that if a and b defines the data channel bandwidth, no H2 

or IM2 will be in the channel, as shown in Fig. 5.3 

 

 
 

RF engineers would like to denote the nonlinearity NOT by a2, but by intercept points (IP), as this 

notation offers a shorthand calculation in dB for an upper bound, as illustrated by Fig. 5.4.  Here we plot 

vin and vout in dB, i.e., log-log plots.  The linear a1 term from Eq. (5.3) will be: 

 

       

     linearoutin
in

linearoutinin

ppa
R

va

vvava

,1010110

22

1
10

,1010110110

log10log10log20
2

log10

log20log20log20log20














 (5.5) 

 

That is, the linear response will be a straight line of slope 1.  The transducing gain is a1 in dB. 

 

The quadratic term from Eq. (5.3) will be: 

 

Fig. 5.3. Frequency components of 2
nd

 harmonic (H2) and intermodulation (IM2) generated by the 

quadratic term in the two-tone signal.  Notice that if A = B, the H2 terms are 2 times smaller in 

voltage (6dB) than the IM2 terms. 
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  (5.6) 

 

That is, the quadratic response will be a straight line of slope 2 in voltage or in power.  Notice that the 

total response of vout will remain curving in the log-log plot when ALL terms in the Taylor series are 

considered.  It is the “individual Taylor terms” that are the straight lines with various slopes.  Now we 

define IPH2 as the intercept point where the second harmonic has the same voltage (or power) as the 

fundamental, as shown in Fig. 5.4. 

 

 
 

Notice that IPH2 denotes the point on tht VTC where pout1 = poutH2, and then the fundamental frequency 

decreases with slope 1 with vin (i.e., pout1 decreases 10dB with every 10dB of pin) and the 2
nd

 harmonic 

term decreases with slope 2 with vin (i.e., poutH2 and poutIM2 decreases 20dB with every 10dB of pin).  From 

Eq. (5.4), we also notice that IM2 voltage is 2 times larger than H2 voltage when A = B, i.e., poutIM2 = 

4×poutH2 or poutIM2 is 6dB above poutH2.  IIP is defined by the intercept of the fundamental frequency, and 

the H2 and IM2 terms.  Accordingly, IIPIM2 will be 6dB lower than IIPH2, as shown in Fig. 5.4. 

 

Let’s use a realistic amplifier to illustrate the shorthand calculation of 2
nd

 harmonic by IP.  Assume the 

amplifier has a gain of 20dB and IIPH2 at 5dBm (by definition OIPH2 = 15dBm as the intercept is on the 

fundamental line as well).  We can estimate the 2
nd

 harmonic terms readily.  For an input at 30dBm, 

Output of the fundamental will be at 10dBm.  As input is 25dB lower than the IIPH2, poutH2 will be at a 

further 25 dB lower than pout1 at 35dBm, i.e., pin = 30dBm; pout1 = 10dBm; poutH2 = 35dBm.   

 

For the same gain of 20dB and IIPH2 = 5dBm, if pin = 50dBm, then pout1 = 30dBm, and poutH2 = 

75dBm. 

 

In the example above, we will also know IIPIM2 = 11dBm.  For pin = 50dBm, poutIM2 = 69dBm. 

 

We can also write the algebraic equations as: 
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Fig. 5.4. Use of intercept points to represent nonlinearity from the quadratic term. 
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Use the above example, at pin = 30dBm; poutH2 = 35dBm = 2(10dBm) – 15dBm. PoutIM2 = 29dBm = 

2(10dBm) – 9dBm.  Check! 

 

Or we can write the relation at the intercept point IPIM2 (in real number, not dB) as: 

 
2

22212 IIPIMIIPIMOIPIM AaAaA   (5.8) 
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a

a
AIIPIM    (5.9) 

 

We can see the definition of IP is nothing but a shorthand to denote the nonlinearity.  We can also see 

when the module has larger nonlinearity (larger |a2|), then IIPIM2 and IIPH2 will be lower, i.e., the output 

will see nonlinearity at a lower input level. 

 

A last word on 2
nd

 order nonlinearity.  When the DC offset is important for direct conversion (i.e., the 

baseband is DC), the DC term in Eq. (5.4) will be critical.  The DC term magnitude is the same as H2, 

and should be denoted accordingly. 

 

5.3 3
rd

 order terms in the two-tone signal treatment and intermodulation (IM) 

 

Now we will look at the third-order nonlinearity.  This is often more important than the second-order 

nonlinearity in RF transmitters for two reasons:   

 

1. Many transmitters build up their signals in a differential way, and all even-order terms are 

rejected by the common-mode rejection ratio (CMRR).   

 

2. The third-order intermodulation has terms “in band”, i.e, very close to the fundamental frequency, 

and cannot be filtered without distorting the original spectrum within the channel.  The second-

order intermodulation has no term that is closed to the fundamentals. 

 

We can repeat similar trigonometry function manipulation as in Eq. (5.4), and arrive at: 
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 (5.10) 

 

We can notice that Eq. (5.10) gives 8 frequency components, one group around the original band, and the 

other around the third harmonics, as shown in Fig. 5.5.   
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We can construct the similar input and output intercept points (IIP and OIP) for 3

rd
 harmonics as shown in 

Fig. 5.6.  Now the 3
rd

 harmonics have slope of 3, i.e., poutH3 and poutIM3 decreases 30dB with every 10dB of 

pin. We also notice that if A = B, the IM terms in vout,3rd is 3 times larger than the H3 terms, or poutIM3 is 

20×log103 = 9.54dB higher than poutH3.  From the different slope in the log-log (or dB-dB) plot, if pout1 is 

lower than OIPH3 by X dB, poutH3 will be lower than pout1 by 2X dB (i.e., pout1 with slope 1 and poutH3 with 

slope 3).  Therefore, IIPIM3 will be just 9.54dB/2 = 4.77dB lower than IIPH3.  This is graphically 

represented in Fig. 5.6. 

 

 
 

We can also work out the algebraic equations for the relation between the third harmonic terms and the 

fundamental term, similar to Eqs. (5.7 – 5.9). 
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We can also give the voltage amplitude at the IM3 intercept point (IPIM3): 

 

Fig. 5.6. Use of intercept points of IIPIM3 and IIPH3 to represent nonlinearity from the cubic term. 
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Fig. 5.5. Frequency components of 2
nd

 (blue) and 3
rd

 (red) order nonlinearity in the two-tone signal. 

Notice that we have qualitatively expressed the relative magnitude for the 8 terms in IM3 and H3.  
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Of no surprise, IIPIM3 and IIPH3 are nothing more than short hands to denote the cubic nonlinearity with 

easier dB estimation! 

 

Among all of the harmonic and intermodulation terms, terms at 2fa – fb and 2fb – fa as 3
rd

-order 

intermodulation are by far the MOST important, as they are very close to fa and fb.  In a given channel, the 

spread spectrum caused by data modulation and phase noise as shown in Fig. 5.1, IM3 can distort that 

spread spectrum and cause data errors and non-retrievable waveforms!  As mentioned before, even-order 

terms can be smaller by differential signaling (i.e., a0 and a2 are much smaller than a1 and a3), and IM3 is 

also larger than H3 by 9.54dB.  Due to its importance and dominance, if you are given a module with the 

specification of “IIP3”, it is implicitly assumed IIP3 means IIPIM3.  Remember that for all terms in H2, 

IM2, H3 and IM3, only part of IM3 will make an “in-band” contribution to vout. 

 

Before we leave the topic, we have an important term to discuss.   
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We can see that the cubic nonlinearity changes the gain of the module!!!  For example, in the case where 

A << B (i.e., in the two tone signal, one is much weaker than the other), the voltage amplitude at fa is: 
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The gain factor at fa after the module does not ONLY depend on the module parameters a1 and a3, but 

also the stronger signal strength B at fb!!!!  When a1 and a3 are of opposite signs (most often for 

nonlinearity due to gain saturation), that means the gain at fa will decrease from its linear gain of a1 with a 

strong signal at fb present!  This is called “desensitization”, and is very important for the consideration of 

anti-jamming when the RF channels are saturated at a particular frequency (not band, as it will be more 

difficult) on purpose by hackers or for privacy.  Also, if amplitude modulation is used, we can see the 

amplitude modulation at fa signals will be affected by signals at fb.  This is called “cross modulation”, 

and is an important design factor for systems using AM or the in-phase I component in any q-naries 

modulation. 

 

One of the most straightforward ways to mitigate desensitization and cross modulation is indeed to 

improve the linearity of the RF modules, or make |a3| << |a1|.  For BJT or MOSFET in subthreshold, 

when the transfer gain is nearly exponential, |a3|  |a1| and is quite large.  Special care will be needed to 

treat desensitization and cross modulation.  For MOSFET in above-threshold saturation, the cubic 

nonlinearity in a3 is on the other hand very small, and hence a better choice when desensitization or cross 

modulation is significant. 
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5.4 1-dB compression point when only IM3 is important 

 

As mentioned before, IM3 is most important due to its in-band nature.  However, because it is “in-band”, 

it is difficult to measure directly as IM3 will “hide behind” the phase noise of the LO of your receiver or 

your spectrum analyzer.  H2 and H3 are much easier to measure, and we can “theoretically derive” IM2 

and IM3 from H2 and H3 by  

 

IIPIM3 = IIPH3 – 4.77dB   and   IIPIM2 = IIPH2 – 6.0dB.    (5.17) 

 

This is unfortunately not a direct measurement, and hence not preferred by RF engineers, whose motto is 

“Measure twice; cut once” or “Measure the component at hand before use even if the component 

specification is given”.  Hence, another popular way to denote the nonlinearity is by the 1dB compression 

point, as shown in Fig. 5.7.  We can see that as long as the output can be measured as a function of input, 

the 1-dB compression point (I1dBcomp) can be directly extracted from the measurement of the module under 

test.   

 
If we assume that the nonlinearity is ONLY caused by IM3 (this can be true if the VTC is a narrow-band 

plot with only in-band signals), we can then relate IIPIM3 and I1dBcomp by the following derivation on the 

voltage amplitude A1dBcomp (we have assumed a3 < 0 here): 
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From Eq. (5.14), we can then write 
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  (5.19) 

 

Notice that Eq. (5.19) is correct in both power and voltage.  Finally we can write in dB: 

 

I1dBcomp = IIPIM3 – 9.64dB  (5.20) 

 

O1dBcomp = IIPIM3 + gain – 1dB – 9.64dB = OIPIM3 – 10.64dB (5.21) 

Fig. 5.7. The input level I1dBcomp that gives a measured output that is 1dB lower (in voltage or in 

power) than the linear projection from low input power. 
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where O1dBcomp is the measured output power that is 1dB lower than the projected linear-gain output 

power. 

 

For a module with nonlinearity, most often it is given by IIP3 (implicitly assumed as IIPIM3) or I1dBcomp 

(implicitly assumed IM3 is dominant).  Read the fine prints in the specification sheet carefully, and 

compare with your module under test. 

 

5.5 Nonlinearity and intercept point in a two-module cascade 

 

We will treat the nonlinearity of a two-module cascade and derive some intuition under the simplest case 

of IM3 adding randomly or coherently, as shown in Fig. 5.8.  For multi-modules or specific consideration 

of the phase in IM3 terms, we will leave that to the detailed treatment in SIMULINK. 

 

 
If we assume that all IM3 terms of Module 1 and Module 2 can add up “randomly” (all phases of IM3 

terms are random and uncorrelated), i.e., the combined IM3 terms can be treated with the ideal unilateral 

signal gain model and the IM3 power is additive (not voltage amplitude), we can write the power of the 

IM3 term at 2fa – fb as: 
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 (5.22) 

 

where we know g2pout1a,1 = pout1a,2 = pout1a,cas.  We conclude that when the IM3 power adds up (random 

phase), the cascade OIPIM3 (in real number, not dB) can be expressed as: 
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  (5.23) (adding randomly) 

 

This result is intuitive, as the module with higher nonlinearity (smaller OIPIM3) should dominate the 

OIPIM3,cas.  If all IM3 terms add up coherently, we have to use the voltage amplitude instead of the power, 

which will give the cascade IM3 output power at 2fa – fb as (the derivation is similar): 

 

Fig. 5.8. Cascade of two nonlinear modules with respective gain, IIPIM3 and OIPIM3. 
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 (5.24) 

 

or equivalently: 
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   (5.25) (adding coherently) 

 

 

Example: For a power amplifier with g1 = 20dB and OIPIM3,1=40dBm cascading with a filter with g2 = 

0dB and OIPIM3,2 = 40dBm, if we will use Eq. (5.23) for IM3 terms with random phase, 

 

PA-filter cascade will have:  
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38.5dBm. 

 

Filter-PA cascade will have: 
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IMIMcasIM OIPOIPgOIP
, i.e., OIPIM3,cas will be 

40 dBm.   

 

The result makes sense.  The PA-filter cascade will have higher nonlinearity than filter-PA cascade. 

 

If we use the coherent phase in Eq. (5.25) as a worst-case nonlinear cascade, the PA-filter cascade will 

have OIPIM3,cas = 37dBm, 3dB smaller than 40dBm. 

 

Before we close the topic on cascade, we will survey what RF modules have nonlinearity concerns, and 

IIP3 needs to be defined.  As nonlinearity is proportional to the Taylor series by vin, harmonic and 

intermodulation generation is only serious when vin is large (most often at the end of the RF transmitter).  

However, once harmonic and intermodulation are generated, the effect can be felt all over the receiver 

system as well, as the main function of the receiver is to retrieve the information in the transmitter before 

going through the nonlinear distortion and harmonic generation.  The first element that needs serious 

nonlinear treatment for IM and harmonic generation is the power amplifier, almost by its name suggests.  

The second possibility is filters and circulators, which are often passive in construction. Air-coil inductors 

and air-gap capacitors have little nonlinearity, but both have small values.  To fit the desired frequency of 

LCf 2/1 , ferromagnetic and high-k materials are needed in high-value inductors and capacitors, 

respectively, which introduce nonlinearity in the permeability and permittivity. 

 


